Với giá trị nào của a và b thì đa thức f(x)=x4-3x3+3x2+ax+bchia hết cho đa thức g(x)=x2+4-3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)⋮g\left(x\right)\)
\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)
\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)
Ta có
Phần dư của phép chia f(x) cho g(x) là R = (a – 3)x + b + 4. Để phép chia trên là phép chia hết thì R = 0, Ɐx
ó (a – 3)x + b + 4 = 0, Ɐx ó a - 3 = 0 b + 4 = 0
ó a = 3 b = - 4 => ab = -12
Đáp án cần chọn là: A
Đa thức f(x) là đa thức có bậc cao nhất là bậc 4 nên khi chia cho đa thức g(x) có bậc cao nhất là bậc 2 và không có dư thì được thương là đa thức bậc 2 . Suy ra
f(x) : g(x) = (x2 + cx + d)
<=> f(x) = g(x).(x^2 + cx + d)
<=> x4 - 3x3 + 3x2 + ax + b = (x2 - 3x + 4)(x2 + cx + d)
<=> x4 - 3x3 + 3x2 + ax + b = x4 + x3.(c - 3) + x2.(d - 3c + 4) + x(-3d + 4c) + 4d
Đồng nhất hai vế , ta sẽ tìm được a,b