Tính: -1- \(\frac{1}{2}\).(1+2)- \(\frac{1}{3}\).(1+2+3) - ... -\(\frac{1}{101}\).(1+2+3+ ...+ 101)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}+\frac{102}{102}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{102.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}\right)}\)
\(A=\frac{1}{102}\)
Tính
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{101\sqrt{100}+100\sqrt{101}}\)
\(N=\frac{-1^2}{1.2}.\frac{-2^2}{2.3}.\frac{-3^2}{3.4}....\frac{-100^2}{100.101}.\frac{-101^2}{101.102}\)
\(=\frac{1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}....\frac{100.100}{100.101}.\frac{101.101}{101.102}\)
\(=\frac{1.2.2.3.3....100.100.101.101}{1.2.2.3.3.4....100.101.101.102}\)
\(=\frac{1}{102}\)
Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
Nên từ đây => \(A< 1\) (ĐPCM)
a) Ta có
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^6}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)
\(A=1-\frac{1}{2^7}\)
Do \(1-\frac{1}{2^7}< 1\Rightarrow A< 1\left(đpcm\right)\)
Các bạn làm rõ ra nhé và nhanh lên mình đang cần gấp