chứng tỏ số có dang abab là 1 bội của 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:abcabc= abc000 + abc
=abc . 1000 + abc .1
=abc . (1000+1)
=abc .1001
=abc . 91 .11 hết cho 11
bài 1 :
Ta có :
abab = 1000a + 100b + 10 a + b
= 1010a + 101b
= 101 ( 10a + b )
Vì 101 chia hết cho 101
=> 101 ( 10a + b ) chia hết cho 101
Vậy abab là bội của 101
bài 2
Ta có :
aaabbb = 111000a + 111b
= 37 ( 3000a + 3 b )
Vì 37 chia hết cho 37
=> 37 ( 3000a + 3b ) chia hết cho 37
Vậy 37 là ước của aaabbb
Ta có :
\(abab=1000a+100b+10b+a\)
\(=\left(1000a+a\right)+\left(100b+1b\right)=a\left(1000+1\right)+b\left(100+1\right)\)
\(=a.1001+b.101\)
Ta thấy :
\(a.1001⋮11\)
\(b.101⋮11\)
\(\Rightarrow a.1001+b.101⋮11\)
Vậy \(11\) là ước của số có dạng \(abab\)
Ta có:
abba = a.1000+b.100+b.10+a
abba = a.1001+110
abba = a.11.91+b.11.10
abba = a.11.(91+10)
=> 11 là ước của abba
Vậy tick nhé bạn
abba= 1001*a+b*110 ma 1001chia hết 11 và 110 chia het 11 suy ra abba là boi 11
aaabbb= 111000*a +b*111 ma 111000chia hết 37 và 111 chia het 37 suy ra 37 la uoc cua aabbb
Ta có : abba = a00a + bb0
= a x 1001 + b x 110
= a x 11 x 91 + b x 11 x 10
= 11 x (a x 91 + b x 10)
=> abba chia hết 11
=> số có dạng abba là bội của 11
Ta có:abba=1000a+100b+10b+1a
=1001a+110b
Vì 1001 \(⋮\)11 nên 1001a chia hết cho 11
Vì 110\(⋮\)11 nên 110b chia hết cho 11
Vì 1001a chia hết cho 11 và 110b chia hết cho 11 nên:
1001a+110b\(⋮\)11
hay abba\(⋮\)11
Vậy abba là bội của 11
aaaaaa= a.111111= a.11.10101
từ đó suy ra aaaaaa \(\in\) B(11).
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!