K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

\(A=\left|2x-2\right|+\left|2x-2013\right|\)

\(A=\left|2x-2\right|+\left|2013-2x\right|\)

\(A\ge\left|2x-2+2013-2x\right|\)

\(A\ge2011\)Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)

11 tháng 3 2018

A=|2x-2|+|2x-2013|

ta có |2x-2|=|2-2x|>hoặc=2-2x

. |2x-2013|>hoặc=2x-2013

=) A> hoặc = 2-2x+2x-2013

A> hoặc = -2011

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

\(4x^2\)+\(20x\)+\(25\)+\(6x^2\)\(8x\)\(x^2\)-\(22\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(4\)-\(1\)

=(\(3x\)+\(2\))2-\(1\)

vì (\(3x\)+\(2\))2 >-0

=>.................-\(1\)>-(-1)

(>- là > hoặc =)

=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)

..................................

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

31 tháng 7 2018

Đặt x2-2x+1=t, ta có:

\(A=\left(t-1\right)\left(t+1\right)=t^2-1=\left(x^2-2x+1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

31 tháng 7 2018

Đặt \(\left(x^2-2x\right)\left(x^2-2x=2\right)=k.\left(k+2\right)=A\)

\(\Rightarrow A=k.\left(k+2\right)=k^2+2k\)

\(\Rightarrow A=k^2+k+k+1-1=k\left(k+1\right)+\left(k+1\right)-1\)

\(\Rightarrow A=\left(k+1\right)^2-1\)

\(\Rightarrow A=\left(x^2-2x+1\right)^2-1\)

\(\Rightarrow A=\left(x^2-x-x+1\right)^2-1=\left[x.\left(x-1\right)-\left(x-1\right)\right]^2-1\)

\(\Rightarrow A=\left(x-1\right)^2-1\ge-1\)

( Dấu "=" xảy ra <=> x=1 )

20 tháng 5 2021

Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)

Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất

TH1: |2x-2|=0 Suy ra 2x=2=>x=1

A= 0+|2.2-2013|=2009

TH2:|2x-2013|=0=>2x=2013=>x=1006,5

A=|2x-2|+|2x-2013|=|2.1006,5-2|=2011

Vì 2011>2009 suy ra MinA =2009

 

20 tháng 5 2021

sai rồi

 

NV
17 tháng 1 2024

Áp dụng BĐT trị tuyệt đối ta có:

\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

\(\Rightarrow A_{min}=2011\)

Dấu "=" xảy ra khi \(\left(2x-2\right)\left(2013-2x\right)\ge0\Rightarrow1\le x\le1006\)