Tìm GTLN của y = (2x + 5)(5 - x) với -5/2 <= x <= 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x+3\) và \(5-2x\) đều không âm, áp dụng BĐT \(ab\le\frac{\left(a+b\right)^2}{4}\) ta có
\(y=\frac{1}{2}.\left(2x+6\right)\left(5-2x\right)\le\frac{1}{2}.\frac{\left(2x+6+5-2x\right)^2}{4}=\frac{1}{2}.\frac{11^2}{4}=\frac{121}{8}\)
\(\Rightarrow y_{max}=\frac{121}{8}\) khi \(2x+6=5-2x\Leftrightarrow x=\frac{-1}{4}\)
\(4x^2-2\left|2x-1\right|-4x-5=\left(2x-1\right)^2-2\left|2x-1\right|+1-5\)
\(=\left(\left|2x-1\right|-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi \(\left|2x-1\right|=1\Leftrightarrow x=1\text{ hoặc }x=0\)
=> GTNN của y là -5
\(y=\left(\left|2x-1\right|-1\right)^2-5\)
\(-2\le x\le1\Rightarrow-5\le2x-1\le1\Rightarrow0\le\left|2x-1\right|\le5\)
\(\Rightarrow-1\le\left|2x-1\right|-1\le4\Rightarrow0\le\left(\left|2x-1\right|-1\right)^2\le16\)
\(\Rightarrow y\le16-5=11\)
Dấu "=" xảy ra khi x = -2
Vậy GTLN của y là 11.
Vì \(3< x< 5\)
\(\Rightarrow x=4\)
Ta có : \(C=x^2-2x-5\)
\(=x^2-2x.1+1^2-1^2-5\)
\(=x^2-2x.1+1-1-5\)
\(=\left(x^2-2x.1+1\right)-1-5\)
\(=\left(x-1\right)^2-6\)
\(\Leftrightarrow\left(x-1\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2-6\ge6\)
Vậy C đạt GTNN <=> x=1
x >= -5/2 => 2x+5 >= 0
x < = 5 => 5-x >= 0
=> y = (2x+5).(5-x) >= 0
Dấu "=" xảy ra <=> 2x+5=0 hoặc 5-x=0 <=> x=-5/2 hoặc x=5
Vậy ..............
Tk mk nha