Phân tích đa thức thành nhân tử
a2+b2-a2b2+ab-a-b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)
\(=x^2y+xy^2-y^2z-yz^2+x^2z-xz^2\)
\(=x^2y-yz^2+xy^2-y^2z+x^2z-xz^2\)
\(=y\left(x-z\right)\left(x+z\right)+y^2\left(x-z\right)+xz\left(x-z\right)\)
\(=\left(x-z\right)\left(xy+yz+y^2+xz\right)\)
\(=\left(x-z\right)\left(x+y\right)\left(x+z\right)\)
a: \(a^2+6ab+9b^2-1\)
\(=\left(a+3b\right)^2-1^2\)
\(=\left(a+3b+1\right)\left(a+3b-1\right)\)
b: \(4x^2-25+\left(2x+7\right)\left(5-2x\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x+7\right)\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)
\(=-2\left(2x-5\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=\left(x+3y\right)\left(-15x+5\right)\)
\(=-5\left(3x-1\right)\left(x+3y\right)\)
d: \(x\left(x+y\right)^2-y\left(x+y\right)^2+xy-x^2\)
\(=\left(x+y\right)^2\cdot\left(x-y\right)-x\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x+y\right)^2-x\right]\)
e: \(a^2-6a+9-b^2\)
\(=\left(a-3\right)^2-b^2\)
\(=\left(a-3-b\right)\left(a-3+b\right)\)
f: \(x^3-y^3-3x^2+3x-1\)
\(=\left(x^3-3x^2+3x-1\right)-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)
\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)
\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)
\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)
\(a^6+a^4+a^2b^2+b^4-b^6\\ =a^6-b^6+a^4+a^2b^2+b^4\\ =\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2\right)^3-\left(b^2\right)^3\right]+\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^2+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+2a^2b^2+b^4-a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]\\ =\left(a^2-b^2+1\right)\left(a^2+b^2-ab\right)\left(a^2+b^2+ab\right)\)
\(=a^2\left(1-b^2\right)+b\left(b-1\right)+a\left(b-1\right)..\)
\(=a^2\left(1-b\right)\left(1+b\right)-b\left(1-b\right)-a\left(1-b\right).\)
\(=\left(a^2+a^2b-b-a\right)\left(1-b\right)\)
\(=\left(ab+a+b\right)\left(a-1\right)\left(1-b\right)\)
\(a^2+b^2-a^2b^2+ab-a-b\)
\(=a^2\left(1-b^2\right)+b\left(b-1\right)+a\left(b-1\right)\)
\(=a^2\left(1-b\right)\left(1+b\right)-b\left(1-b\right)-a\left(1-b\right)\)
\(=\left(a^2+a^2b-b-a\right)\left(1-b\right)\)
\(=\left(ab+a+b\right)\left(a-1\right)\left(1-b\right)\)