K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

x2+2xy+x+y2+4y=0

x[x+2y+1]y[4+y]=0

x=0

y=0

y=-4

x=-1

y=-2

3 tháng 3 2022

bn học Δ chx nhỉ

3 tháng 3 2022

Lớp 8 chx học cái đó, này bài của đứa em :((

Còn mình thì học r, tại lớp 9 học r nhm sợ đứa e ko hiểu cái đăng lên , k ngờ rằng ....

20 tháng 2 2022

Thay x = -1 vào phương trình, ta có: 

\(\left(-1\right)^2-2\left(-1\right)+m-1=0\)

<=> m = -2

PT: x2 - 2x - 3 = 0

<=> (x-3)(x+1) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy nghiệm còn lại là x = 3

20 tháng 2 2022

Thay x = -1 vào pt trên ta được 

\(1-2\left(-1\right)+m-1=0\Leftrightarrow m+2=0\Leftrightarrow m=-2\)

Thay m = -2 vào ta được \(x^2-2x-3=0\)

Ta có a - b + c = 0 

vậy pt có 2 nghiệm \(x=-1;x=3\)

hay nghiệm còn lại là 3 

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

$3^x.x^2=4y(y+1)$ nên $x$ chẵn. Đặt $x=2a$ ta có:

$3^{2a}.a^2=y(y+1)\Leftrightarrow (3^a.a)^2=y(y+1)$

Dễ thấy $(y,y+1)=1$ nên để tích của chúng là scp thì $y,y+1$ là scp.

Đặt $y=m^2; y+1=n^2$ với $m,n$ tự nhiên.

$\Rightarrow 1=(n-m)(n+m)$

$\Rightarrow n=1; m=0\Rightarrow y=0\Rightarrow x=0$

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Lời giải:

Hiển nhiên $x\geq 0$

Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$

$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$

$\Rightarrow x$ chẵn.

Đặt $x=2a$ với $a$ là số tự nhiên.

Khi đó: $2^{2a}-y^2=-57$

$\Leftrightarrow (2^a-y)(2^a+y)=-57$

Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Lời giải:

Hiển nhiên $x\geq 0$

Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$

$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$

$\Rightarrow x$ chẵn.

Đặt $x=2a$ với $a$ là số tự nhiên.

Khi đó: $2^{2a}-y^2=-57$

$\Leftrightarrow (2^a-y)(2^a+y)=-57$

Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$