Tìm nghiệm nguyên của phương trình
x2+2xy+x+y2+4y=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lớp 8 chx học cái đó, này bài của đứa em :((
Còn mình thì học r, tại lớp 9 học r nhm sợ đứa e ko hiểu cái đăng lên , k ngờ rằng ....
Thay x = -1 vào phương trình, ta có:
\(\left(-1\right)^2-2\left(-1\right)+m-1=0\)
<=> m = -2
PT: x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy nghiệm còn lại là x = 3
Thay x = -1 vào pt trên ta được
\(1-2\left(-1\right)+m-1=0\Leftrightarrow m+2=0\Leftrightarrow m=-2\)
Thay m = -2 vào ta được \(x^2-2x-3=0\)
Ta có a - b + c = 0
vậy pt có 2 nghiệm \(x=-1;x=3\)
hay nghiệm còn lại là 3
Lời giải:
$3^x.x^2=4y(y+1)$ nên $x$ chẵn. Đặt $x=2a$ ta có:
$3^{2a}.a^2=y(y+1)\Leftrightarrow (3^a.a)^2=y(y+1)$
Dễ thấy $(y,y+1)=1$ nên để tích của chúng là scp thì $y,y+1$ là scp.
Đặt $y=m^2; y+1=n^2$ với $m,n$ tự nhiên.
$\Rightarrow 1=(n-m)(n+m)$
$\Rightarrow n=1; m=0\Rightarrow y=0\Rightarrow x=0$
Lời giải:
Hiển nhiên $x\geq 0$
Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$
$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$
$\Rightarrow x$ chẵn.
Đặt $x=2a$ với $a$ là số tự nhiên.
Khi đó: $2^{2a}-y^2=-57$
$\Leftrightarrow (2^a-y)(2^a+y)=-57$
Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$
Lời giải:
Hiển nhiên $x\geq 0$
Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$
$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$
$\Rightarrow x$ chẵn.
Đặt $x=2a$ với $a$ là số tự nhiên.
Khi đó: $2^{2a}-y^2=-57$
$\Leftrightarrow (2^a-y)(2^a+y)=-57$
Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$
x2+2xy+x+y2+4y=0
x[x+2y+1]y[4+y]=0
x=0
y=0
y=-4
x=-1
y=-2