Chứng minh rằng số có 6 chữ số abcdeg\(⋮\) 7 nếu:( abc- deg)\(⋮\) 7.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : abcdeg = 1000abc + deg = 1001abc - (abc-deg)
= 7.143abc - (abc - deg)
Mà 7.143abc chia hết cho 7 và abc -deg chia hết cho 7 nên 7.143abc chia hết cho 7
do đó : abcdeg chia hết cho 7
ta có :abcdeg = 1000abc+deg=1001abc-(abc-deg)=7.143abcchia hết cho 7 vì tích đó cos thừa số 7 và theo đề bài abc- deg cũng chia hết cho 7 nên abcdeg chia hết cho 7
a, Ta có: abcdeg = 1000. abc + deg
= 999. abc + abc + deg
= 37. 27 . abc + abc + deg
Có 37. 27. abc chia hết cho 37
và abc + deg chia hết cho 37.
Vậy abcdeg chia hết cho 37 với abc + deg chia hết cho 37.
b, Ta có: abcdeg = 1000. abc + deg
= 1001 . abc - abc + deg
= 7. 143 . abc - (abc - deg)
Có 7, 143 , abc chia hết cho 7
và abc - deg chia hết cho 7
Vậy abcdeg luôn chia hết cho 7 với abc - deg chia hết cho 7.
c, Trong 8 số tự nhiên liên tiếp thì luôn có các dạng số dư của một số khi chia cho 7 là \(\left\{0;1;2;3;4;5;6\right\}\)nhưng có tới tám số và 7 số dư thì chắc chắn trong tám số đó chắc chắn có 2 số đồng dư với nhau gọi là abc và deg. Mà abc và deg đồng dư với nhau thì hiệu abc - deg chia hết cho 7. Theo câu b thì abcdeg chia hết cho 7 với abc - deg chia hết cho 7. Suy ra abcdeg chia hết cho 7 với abc - deg chia hết cho 7.
Vậy trong 8 số tự nhiên có 3 chữ số, tồn tại hai số mà khi viết liêm tiếp nhau thì tạo thành một số có sáu chữ số chia hết cho 7.
Chúc bạn học tốt :)
a, \(B=\dfrac{10^{12}+1}{10^{12}+1}=1\)
+) Xét \(n>12\Rightarrow A>1=B\)
+) Xét \(n< 12\Rightarrow A< B=1\)
Vậy...
b, \(\overline{abc}-\overline{deg}⋮7\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{abc}⋮7\\\overline{deg}⋮7\end{matrix}\right.\)
Ta có: \(\overline{abcdeg}=1000\overline{abc}+\overline{deg}⋮7\) ( do \(\left(1000;7\right)=1\) )
\(\Rightarrowđpcm\)
ta có : abcdeg = 1000abc + deg = 1001abc - (abc-deg)
= 7.143abc - (abc - deg)
Mà 7.143abc chia hết cho 7 và abc -deg chia hết cho 7 nên 7.143abc \(⋮\) 7
Do đó abcdeg \(⋮\)7