K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

Áp dụng tính chất : a^n - b^n chia hết cho a-b thì :

8^100-1 = (8^2)^50 - 1^50 chia hết cho 8^2-1 = 63

Mà 63 chia hết cho 9 => 8^100-1 chia hết cho 9

Tk mk nha

7 tháng 4 2019

Ta có:\(8^2\equiv1\left(mod9\right)\) 

\(\Rightarrow\left(8^2\right)^{50}=8^{100}\equiv1\left(mod9\right)\)

\(\Rightarrow\left(8^{100}-1\right)⋮9\left(đpcm\right)\)

Ta có 8\(\equiv\)-1(mod 9)=> 8100\(\equiv\)(-1)100\(\equiv\)1(mod 9)

=>8100-1\(⋮\)9(đpcm)

15 tháng 5 2016

\(P>\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{7}{8}\cdot\cdot\cdot\frac{99}{100}\cdot\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{98}{99}\right)\)

\(P>\frac{49}{50}>\frac{1}{15}\)

\(P^2<\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{7}{8}\cdot...\cdot\frac{99}{100}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\frac{8}{9}\cdot....\cdot\frac{100}{101}\right)\)

\(P^2<\frac{1}{101}<\frac{1}{10}\)

\(\Rightarrow\frac{1}{15}

10 tháng 8 2023

Các số hạng của P là 1/n (với n là số tự nhiên). Do đó P có 99 số hạng.

Ta có:

\(P=\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=99\cdot\dfrac{1}{100}=\dfrac{99}{100}>\dfrac{9}{10}\)

28 tháng 4 2018

ta có: \(A=\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+...+\frac{100}{3^{101}}\)

\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}+\left(\frac{2}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{100}{3^{100}}-\frac{99}{3^{100}}\right)-\frac{100}{3^{101}}\)

\(\frac{2}{3}A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{100}{3^{101}}\)

+) Xét \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)

\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}...+\frac{1}{3^{101}}\)

\(\Rightarrow B-\frac{1}{3}B=\frac{1}{3}-\frac{1}{3^{101}}\)

\(\frac{2}{3}B=\frac{1}{3}-\frac{1}{3^{101}}\)

\(\Rightarrow B=\left(\frac{1}{3}-\frac{1}{3^{101}}\right):\frac{2}{3}=\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{2}\)

Thay B vào A, ta có:

\(\frac{2}{3}A=\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{2}-\frac{100}{3^{101}}\)

\(\Rightarrow A=\left(\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{2}-\frac{100}{3^{101}}\right):\frac{2}{3}\)

\(A=\left(\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{2}-\frac{100}{3^{101}}\right).\frac{3}{2}\)

\(A=\frac{9}{4}.\left(\frac{1}{3}-\frac{1}{3^{101}}\right)-\frac{100.3}{3^{101}.2}=\frac{9}{4}.\left(\frac{1}{3}-\frac{1}{3^{101}}\right)-\frac{150}{3^{101}}\)

                                                            \(A=\frac{3}{4}-\frac{9}{4}.\frac{1}{3^{101}}-\frac{150}{3^{101}}< \frac{3}{4}\)

\(\Rightarrow A=\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}< \frac{3}{4}\left(đpcm\right)\)