Tính:
A = 22005 - 22004 - 22003 - ..... - 22 - 2 - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=1+2+2^2+...+2^{2002}\)
\(2A=2+2^2+2^3+...+2^{2003}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2003}\right)-\left(1+2+2^2+....+2^{2002}\right)\)
\(A=2^{2003}-1\)
Mà: \(2^{2003}=2^{2003}\)
\(\Rightarrow2^{2003}-1< 2^{2003}\)
\(\Rightarrow A< B\)
\(S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}\)
\(2.S=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(2.S-S=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)
\(S=2-\dfrac{1}{2^{2006}}\)
A = 2 + 22 + 23 + … + 22004 . Chứng minh rằng A chia hết cho 3 , cho 7.
mik bt lm câu 1 thôi nha, bn thông cảm:
a = 2007.2009 b = 20082
=(2008 - 1)(2008 + 1)
= 20082 - 1
Ta có, a = 20082 - 1, b = 20082
mà 20082 - 1 < 20082
=> a < b
Đặt A=22+23+..+22005
2A=23+24+..+22006
suy ra 2A-A=(23+24+..+22006) - (22+23+..+22005)
A=22006-22
suy ra C=4+22006-4
C=22006 .Là lũy thừa của 2 (đpcm)
Ta có: \(A=2^{100}-2^{99}-2^{98}-...-2^2-2-1\)
\(\Leftrightarrow2A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2\)
\(\Leftrightarrow2A-A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2-2^{100}+2^{99}+2^{98}+...+2^2+2+1\)
\(\Leftrightarrow A=2^{101}-2\cdot2^{100}+1\)
\(\Leftrightarrow A=1\)
\(2^{2004}=\left(2^{668}\right)^3\)
\(5^{891}=\left(5^{297}\right)^3\)
mà \(2^{668}>5^{297}\)
nên \(2^{2004}>5^{891}\)
a) \(\dfrac{7}{8} + \dfrac{7}{8}:\dfrac{1}{8} - \dfrac{1}{2}\)
\(\begin{array}{l} = \dfrac{7}{8} + \dfrac{7}{8}.8 - \dfrac{1}{2}\\ = \dfrac{7}{8}.1 + \dfrac{7}{8}.8 - \dfrac{1}{2}\\ = \left( {\dfrac{7}{8}.1 + \dfrac{7}{8}.8} \right) - \dfrac{1}{2}\\ = \dfrac{7}{8}.\left( {1 + 8} \right) - \dfrac{1}{2} = \dfrac{7}{8}.9 - \dfrac{1}{2}\\ = \dfrac{{63}}{8} - \dfrac{1}{2} = \dfrac{{63}}{8} - \dfrac{4}{8} = \dfrac{{63 - 4}}{8} = \dfrac{{59}}{8}\end{array}\)
b) \(\dfrac{6}{{11}} + \dfrac{{11}}{3}.\dfrac{3}{{22}}\)
\(\begin{array}{l} = \dfrac{6}{{11}} + \dfrac{{11.3}}{{3.22}} = \dfrac{6}{{11}} + \dfrac{1}{2}\\ = \dfrac{{12}}{{22}} + \dfrac{{11}}{{22}} = \dfrac{{12 + 11}}{{22}} = \dfrac{{23}}{{22}}\end{array}\)