Cho tam giác ABC ngoại tiêp (O) tiêp xúc với BC tại M; đg kính MN cuả (O); giao điểm cuả AN và BC là H. C/m: BM = CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Chứng minh cung IE bằng cung IF
b) chứng minh EF song song với BC và tứ giác AMND nội tiếp nha !!!!!
Bạn nào giúp mình với
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E F D H I K G
Gọi hình chiếu của B và C trên đường thẳng EF lần lượt là G và K
Ta có: AE và AF là 2 tiếp tuyến của (I) => AE=AF => \(\Delta\)EAF cân đỉnh A
=> ^AEF=^AFE => ^GEB=^KFC (2 góc đối đỉnh)
=> \(\Delta\)BGE ~ \(\Delta\)CKF (g.g) => \(\frac{BE}{CF}=\frac{GE}{KF}\)
Mà \(\frac{BE}{CF}=\frac{BD}{CD}\)(Vì BE=BD và CF=CD theo t/c tiếp tuyến)
\(\Rightarrow\frac{BD}{CD}=\frac{GE}{KF}\). Lại có: Tứ giác BGKC là hình thang có DH//BG//CK
\(\Rightarrow\frac{BD}{CD}=\frac{GH}{KH}=\frac{GE}{KF}=\frac{GH-GE}{KH-KF}=\frac{EH}{FH}\)(T/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{BE}{CF}=\frac{EH}{FH}\)
Xét \(\Delta\)BEH và \(\Delta\)CFH: ^BEH=^CFH (Bù 2 góc ^AEF và ^AFE bằng nhau); \(\frac{BE}{CF}=\frac{EH}{FH}\)
=> \(\Delta\)BEH ~ \(\Delta\)CFH (c.g.c) => ^BHE=^CHF => 900 - ^BHE = 900 - ^CHF
=> ^BHD=^CHD => HD là phân giác ^BHC (đpcm).