📢 OLM ra mắt OLM EduHub - Dịch vụ giáo dục theo yêu cầu! Xem chi tiết tại đây 🚀
🎯Bài kiểm tra ĐGNL đầu hè miễn phí cho học sinh
Hướng dẫn xuất báo cáo, thống kê dành cho nhà trường. Xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hàm số f(x) có đạo hàm liên tục trên R và có f(1)=1; f(-1)= - 1 3 . Đặt g(x)= f x 2 - 4 f x . Cho biết đồ thị của y=f'(x) có dạng như hình vẽ dưới đây
Mệnh đề nào sau đây đúng?
Cho hàm số y=f(x) liên tục trên R và có đạo hàm f ' ( x ) = x 3 ( x + 1 ) 2 ( x - 2 ) Hàm số y=f(x)có bao nhiêu điểm cực trị?
A. 3
B. 1
C. 0
D. 2
Đáp án D
Câu 5. Cho hàm số f x có đạo hàm liên tục tên R và có đạo hàm ' 2 f x x x 9 1 .Tìm m để hàm số 2 y f x x m 2 đồng biến trên 1,3
Cho hàm số y = f ( x ) liên tục trên R và có đạo hàm f ' ( x ) = ( 1 - x ) 2 ( x + 1 ) 3 ( 3 - x ) . Hàm số y = f ( x ) đồng biến trên khoảng nào dưới đây
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết f(1)=e và ( x + 2 ) f ( x ) = x f ' ( x ) - x 3 , với mọi x thuộc R. Tính f(2).
A. 4 e 2 - 4 e + 4
B. 4 e 2 - 2 e + 1
C. 2 e 3 - 2 e + 2
D. 4 e 2 + 4 e - 4
Cho hàm số y=f(x) có đạo hàm liên tục trên R thỏa mãn x f x . f ' x = f 2 x - x , ∀ x ∈ R và f(2)=1 Tích phân ∫ 0 2 f 2 x d x bằng
A. 3 2
B. 4 3
C. 2
D. 4
Biết hàm số f(x) có đạo hàm f’(x) liên tục trên R và f(1) = e2, ∫ 1 ln 3 f ' x d x = 9 - e 2 . Tính f(ln3).
A. f(ln3) = ln3 + 2e2
B. f(ln3) = 3
C. f(ln3) = 9 – 2e2
D. f(ln3) = 9
Chọn D
Cho hàm số y = f(x) có đạo hàm liên tục trên R và đồ thị hàm số y = f'(x) như hình vẽ. Bất phương trình f ( x ) ≤ 3 x - 2 x + m có nghiệm trên ( - ∞ ; 1 ] khi và chỉ khi
Chọn A
Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thoả mãn f'(x) = (1 - x)(x+2)g(x) + 2023 với g(x) < 0, ∀x∈R. Hàm số y = f(1-x) + 2023x + 2024 nghịch biến trên khoảng nào?
Cho hàm số y = f ( x ) liên tục trên R và có đạo hàm f ' ( x ) = x 2 ( x - 2 ) ( x 2 - 6 x + m ) , với mọi x ∈ R . Có bao nhiêu số nguyên m thuộc đoạn - 2019 ; 2019 để hàm số g ( x ) = f ( 1 - x ) nghịch biến trên khoảng - ∞ ; - 1
A. 2012
B. 2011
C. 2009
D. 2010
Cho hàm số f (x) có đạo hàm cấp 3 xác định và liên tục trên R thoả mãn f(x)f‴(x) = x ( x 2 - 1 ) ( x - 4 ) , ∀ x ∈ R . Hàm số g ( x ) = ( f ' ( x ) ) 2 - 2 f ( x ) f '' ( x ) đồng biến trên khoảng nào ?
A. (0;1).
B. (-1;0).
C. ( 4 ; + ∞ ) .
D. ( - ∞ ; - 1 ) .