K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 1 2022

\(\left\{{}\begin{matrix}a\ge4\\b\ge5\end{matrix}\right.\) \(\Rightarrow a^2+b^2\ge16+25=41\Rightarrow c^2=90-\left(a^2+b^2\right)\le49\Rightarrow c\le7\)

Tương tự: \(b=\sqrt{90-\left(a^2+c^2\right)}\le\sqrt{90-\left(4^2+6^2\right)}=\sqrt{38}\)

\(a\le\sqrt{90-\left(5^2+6^2\right)}=\sqrt{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)\left(a-9\right)\le0\\\left(b-5\right)\left(b-8\right)\le0\\\left(c-6\right)\left(c-7\right)\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}13a\ge a^2+36\\13b\ge b^2+40\\13c\ge c^2+42\end{matrix}\right.\)

\(\Rightarrow13\left(a+b+c\right)\ge a^2+b^2+c^2+118=208\)

\(\Rightarrow a+b+c\ge16\)

\(P_{min}=16\) khi \(\left(a;b;c\right)=\left(4;5;7\right)\)

30 tháng 1 2022

a>=4,b>=5,c>=6

=>a+b+c>=4+5+6>=15

hay P>=15

NV
4 tháng 4 2021

Đề sai nhé em

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) thì đúng

4 tháng 4 2021

vâng, em cảm ơn ạ

Y
15 tháng 4 2019

\(\Leftrightarrow\left(a+b\right)\left(\frac{a+b}{ab}\right)\ge4\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}\ge4\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương nên bđt ban đầu luôn đúng

Dầu "=" xảy ra \(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)

18 tháng 5 2018

Ta có:\(C=a+b\)

\(C=\dfrac{9}{12}a+b+\dfrac{3}{12}a\)

\(C\ge2\sqrt{\dfrac{9}{12}ab}+\dfrac{3}{12}.4\)(AM-GM)

\(C\ge2\sqrt{\dfrac{9}{12}.12}+1\)

\(C\ge2.3+1=7\left(\text{đ}pcm\right)\)

"="<=>a=4;b=3

22 tháng 4 2018

Do : a ≥ 4

⇒ b ≥ \(\dfrac{12}{a}\) ≥ 3

⇒ a + b ≥ 4 + 3

⇒ a + b ≥ 7 ( chắc thế :D)

17 tháng 11 2017

Áp dụng bđt coooossi : c = a+b = a/4 + (3/4a+b) >= a/4 + 2\(\sqrt{\frac{3}{4}.ab}\) >= 4/4 + 2\(\sqrt{\frac{3}{4}.12}\) = 1 + 2\(\sqrt{9}\) = 7

=> ĐPCM 

Dấu "=" xảy ra <=> a=4 ; ab=12 <=> a=4 ; b=3

k mk nha

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Lời giải:
Bổ sung điều kiện $a\neq b$

Ta có: $\frac{a^2+b^2}{|a-b|}\geq 4\sqrt{3}$

$\Leftrightarrow a^2+b^2\geq 4\sqrt{3}|a-b|$

$\Leftrightarrow (a-b)^2+2ab-4\sqrt{3}|a-b|\geq 0$

$\Leftrightarrow |a-b|^2+12-4\sqrt{3}|a-b|\geq 0$

$\Leftrightarrow (|a-b|-2\sqrt{3})^2\geq 0$ (luôn đúng)

Do đó ta có đpcm.

Dấu "=" xảy ra khi $|a-b|=2\sqrt{3}$ và $ab=6$ hay $(a,b)=(3+\sqrt{3}, 3-\sqrt{3})$ và hoán vị

2 tháng 3 2018

áp dụng BĐT Cô si :

+ cho cặp số a,b ta được \(a+b\ge2\sqrt{ab}\left(1\right)\)

+ cho cặp số \(\dfrac{1}{a}+\dfrac{1}{b}\) ta được \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\left(2\right)\)

Nhân hai vế với \(\left(1\right),\left(2\right)\) ta được :\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.\dfrac{2}{\sqrt{ab}}=4\) (đpcm)