K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

\(ab=c;bc=4a;ac=9b.\)

\(\Rightarrow ab.bc.ca=c.4a.9b\)

\(\Rightarrow\left(a.b.c\right)^2=36.a.b.c\)

TH1: \(a.b.c=0\)

\(\Rightarrow a=b=c=0.\)

TH2: \(a.b.c\ne0\)

\(\Rightarrow a.b.c=36\)

\(\Rightarrow\left\{{}\begin{matrix}c^2=36\Rightarrow c=\pm6\\4a^2=36\Rightarrow a^2=9\Rightarrow a=\pm3\\9b^2=36\Rightarrow b^2=4\Rightarrow b=\pm2\end{matrix}\right.\)

Vậy \(\left(a;b;c\right)=\left(0;0;0\right),\left(\pm2;\pm3;\pm4\right).\)

Chúc bạn học tốt!

17 tháng 2 2024

cho mình hỏi là bài này ở sách nào vậy

 

2 tháng 2 2020

Tham khảo: Câu hỏi của Bui Cam Lan Bui

30 tháng 8 2019

\(ab+bc+ac=1\)

\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)

\(=\left(ab+bc+ac+a^2\right)\left(ab+bc+ac+b^2\right)\left(ab+bc+ca+c^2\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

8 tháng 7 2021

Thấy : \(a+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\) 

CMTT \(b+ac=\left(b+a\right)\left(b+c\right);c+ab=\left(c+a\right)\left(c+b\right)\)

Suy ra : \(A=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) là b/p số hữu tỉ 

5 tháng 6 2021

Xin lỗi nhé!

Áp dụng BĐT ta có:
`a^2+9>=6a`
`b^2+25>=10b`
`c^2+4>=4a`
`=>a^2+b^2+c^2+38>=6a+10b+4c`
`<=>76>=6a+10b+4c(1)`
Ta có:
`6a+10b+4c`
`=6(a+b)+4(b+c)`
`=48+4(b+c)>=48+4.7=76(2)`
`(1)(2)=>6a+10b+4c=76`
`<=>a=3,b=5,c=2`

NV
5 tháng 6 2021

Do \(a^2+b^2+c^2=38\Rightarrow\left|b\right|\le\sqrt{38}< 7\)

\(\Rightarrow c\ge7-b>0\)

\(\Rightarrow c^2\ge\left(7-b\right)^2\)

Do đó:

\(38=\left(8-b\right)^2+b^2+c^2\ge\left(8-b\right)^2+b^2+\left(7-b\right)^2\)

\(\Leftrightarrow5\left(b-5\right)^2\le0\)

\(\Leftrightarrow b=5\Rightarrow a=3;c=2\)

8 tháng 7 2021

image!!!!!!!!!!!!!

8 tháng 7 2021

Ta có: (a^2+1)(b^2+1)(c^2+1)

= (a^2+ab+bc+ ca)(b^2+ab+bc+ ca)(c^2+ab+bc+ ca)

=[(a^2 +ab)+(bc+ ca)][(b^2 +ab)+(bc+ ca)][(c^2 +ab)+(bc+ ca)]

=(a+c)(a+b)(a+b)(b+c)(c+a)(b+c)

=[(a+c)(a+b)(b+c)]^2

Vậy..............................

31 tháng 10 2021

a có:

6<a<106<a<10

⇒a∈{7;8;9}⇒a∈{7;8;9}

8<c<118<c<11

⇒c∈{9;10}⇒c∈{9;10}

+) Nếu a=7a=7

⇒7<8<9⇒7<8<9

⇒a=7;b=8;c=9⇒a=7;b=8;c=9

+) Nếu a=8a=8

⇒8<9<10⇒8<9<10

⇒a=8;b=9;c=10⇒a=8;b=9;c=10

+) Nếu a=9a=9

⇒9<10<11⇒9<10<11

⇒⇒ Không thỏa mãn vì c<11c<11

Vậy: (a=8,b=9,c=10);(a=7;b=8;c=9)

27 tháng 10 2018

Xét \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\Rightarrow M=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)

Xét \(a+b+c\ne0\) ta có:\(\frac{a-b+c}{b}=\frac{b-c+a}{c}=\frac{c-a+b}{a}=\frac{a-b+c+b-c+a+c-a+b}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a-b+c=b\\b-c+a=c\\c-a+b=a\end{cases}}\Rightarrow\hept{\begin{cases}a+c=2b\\a+b=2c\\b+c=2a\end{cases}}\Rightarrow M=\frac{2a.2b.2c}{abc}=8\)

26 tháng 6 2019

Ta có: 2a+3b là số hữu tỉ 

=> 5(2a+3b)=10a+15b là số hữu tỉ 

5a-4b là số hữu tỉ

=> 2(5a-4b)=10a -8b là số hữu tỉ

=> (10a+15b)-(10a-8b)=10a+15b-10a+8b=23b

=> b là số hữu tỉ

=> 3b là số hữu tỉ

=> (2a+3b)-3b =2a là số hữu tỉ

=> a là số hữu tỉ