Cho a;b là hai số dương thỏa mãn : \(a^2+b^2=6\) CM rằng \(\sqrt{3\left(a^2+6\right)}\) \(\geq\) \(\left(a+b\right)\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Ta có: \(\sqrt{3\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)
<=> \(3\left(a^2+6\right)\ge2\left(a+b\right)^2\)
<=> \(3\left(a^2+b^2+a^2\right)\ge2a^2+2b^2+4ab\)
<=> \(6a^2+3b^2\ge2a^2+2b^2+4ab\)
<=> \(4a^2-4ab+b^2\ge0\)
<=> \(\left(2a-b\right)^2\ge0\) ( Luôn đúng) => đpcm
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}2a=b\\a^2+b^2=6\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}a=\sqrt{\dfrac{6}{5}}=\dfrac{\sqrt{30}}{5}\\b=\dfrac{2\sqrt{30}}{5}\end{matrix}\right.\)
đề bảo cm đâu phải là tìm a ; b đâu mà tìm a ; b