Cho \(a;b>0\)thỏa mãn
\(a^3+b^3=a^5+b^5\)
\(CMR:a^2+b^2\le1+ab\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
\(a^2+b^2\le ab+1\)
\(\Leftrightarrow a^2+b^2-ab\le1\)
\(\Leftrightarrow\)\(a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a^5+b^5\right)\left(a+b\right)\)
\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)
\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)(ĐÚNG VS MỌI A,B>0)
=> ĐPCM
quãng đường đi trong một ngày 1=1/2 quãng đường đi trong 3 ngày còn lại, vì vậy 1=1/3 quãng đường AB(vì tính luôn cả phần của nó. ngày 2 thì 1/4, ngyaf 3 thì 1/5 AB. Vậy số phần quãng đường trong ngày thứ 4:
1-(1/3+1/4+1/5) = 13/60 quãng đường AB
quãng đường AB dài
52:13/60=240(km)
Đáp số: 240km