a*a*a-3a*b*b=5;b*b*b-3a*a*b=10 tính a*a+b*b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tinh gia tri bieu thuc
a,A=3a-2b/a-3b voi a/b=10/3
b,B=a-8/a-5-4a-b/3a+3 voi a-b=3,b khac 5,a khac -1
a) Theo đề ta có :
\(A=\frac{3a-2b}{a-3b}\) với \(\frac{a}{b}=\frac{10}{3}\)
* \(\frac{a}{b}=\frac{10}{3}\) \(\Rightarrow a=\frac{10}{3}.b\)
Thay a = \(\frac{10b}{3}\) vào \(\frac{3a-2b}{a-3b}\)
\(\Rightarrow\frac{3a-2b}{a-3b}=\frac{3.\frac{10b}{3}-2b}{\frac{10b}{3}-3b}\) \(=\frac{10b-2b}{\frac{10b}{3}-\frac{9b}{3}}=\frac{8b}{\frac{b}{3}}=8b:\frac{b}{3}=8b.\frac{3}{b}=8.3=24\)
b) Theo đề ta có :
a - b = 3 => a = b + 3
Thay a = b+3 vào \(B=\frac{a-8}{a-5}-\frac{4a-b}{3a+3}\)
\(\Rightarrow B=\frac{b+3-8}{b+3-5}-\frac{4.\left(b+3\right)-b}{3.\left(b+3\right)+3}\) \(=\frac{b-5}{b-2}-\frac{4b+12-b}{3b+9+3}=\frac{b-2-3}{b-2}-\frac{3b+12}{3b+12}\)
\(=\frac{b-2}{b-2}-\frac{3}{b-2}-1\) \(=1-\frac{3}{b-2}-1=0-\frac{3}{b-2}=-\frac{3}{b-2}\)
k đi!!!
\(1) \sqrt{9a^2.b^2}\)=3ab
\(2) \sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=9a\)
\(3) \sqrt{3a^5}.12a=12\sqrt{3a^7}\)
\(4) \sqrt{5a}.\sqrt{45a}-3a=15a-3a=12a\)
\(5) \sqrt{3+\sqrt{a}}.\sqrt{3-\sqrt{a}}=\sqrt{(3+\sqrt{a}).(3-\sqrt{a})} =\sqrt{9-a} \)
\(6) \sqrt{3+\sqrt{5}}.\sqrt{3\sqrt{5}} =\sqrt{\sqrt{3\sqrt{5}}.(3+\sqrt{5})} =\sqrt{9+\sqrt{15}}\)
1) \(\sqrt{9a^2b^2}=3ab\)
2) \(\sqrt{3a}\cdot\sqrt{27a}=9a\)
4) \(\sqrt{5a}\cdot\sqrt{45a}-3a=15a-3a=12a\)
\(đk:a;b\ne\dfrac{5}{3}\)
\(\dfrac{3b-28}{3a-5}-\dfrac{38-3a}{5-3b}=\dfrac{3b-28}{3\left(11+b\right)-5}-\dfrac{38-3\left(11+b\right)}{5-3b}=1-1=0\)
`Answer:`
a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)
Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)
\(E=\frac{3a+2b}{4a-3b}\)
\(=\frac{3k+2.3k}{4k-3.3k}\)
\(=\frac{3k+6k}{4k-9k}\)
\(=\frac{9k}{-5k}\)
\(=-\frac{9}{5}\)
b. Thay `a-b=5` vào biểu thức `F`, ta được:
\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)
\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)
\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)
\(=1+1\)
\(=0\)
1) a³ + b³ + c³ - 3abc
=(a + b)(a² - ab + b²) + c³ - 3abc
=(a + b)(a² - ab + b²) + c(a² - ab + b²) - 2abc - ca² - cb²
=(a + b + c)(a² - ab + b²) - (abc + b²c + bc² + ac² + abc + c²a) + c³ + ac² + bc²
=(a + b = c)(a² - ab + b²) - (a + b + c)(bc + ca) + c²(a + b + c)
=(a + b + c)(a² + b² + c² - ab - bc - ca)
2) \(\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)=\left(3a+5\right)\left(a-3\right)+2\left(7b-10\right)\left(1\right)\)
\(\Leftrightarrow3a^2+15a+2ab+10b-a-5-2ab+4b=3a^2+14a+15+14b-10\)
\(\Leftrightarrow3a^2+14a+14b-5=3a^2+14a+14b-5\)( đúng)
\(\Rightarrow\left(1\right)\) đúng (đpcm)
a: a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b)-3bac
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
b: Đề sai rồi bạn
c: 2(a+b+c)*(b/2+c/2-a/2)
=(a+b+c)(b+c-a)
=(b+c)^2-a^2
=c^2+2bc+c^2-a^2
\(\dfrac{a}{b}=\dfrac{1}{3}\)
nên b=3a
\(E=\dfrac{3a+2b}{4a-3b}=\dfrac{3a+6a}{4a-9a}=\dfrac{9}{-5}=-\dfrac{9}{5}\)
a-b=5 nên a=b+5
\(F=\dfrac{3\left(b+5\right)-5}{2\left(b+5\right)+b}-\dfrac{4b+5}{b+5+3b}\)
\(=\dfrac{3b+10}{3b+10}-1=1-1=0\)
ta có: a*a*a-3a*b*b=5
=> a3-3ab2=5
=> ( a3-3ab2)2=52
a6-6a4b2+9a2b4=25
ta có: b*b*b-3*a*a*b=10
=>b3-3a2b=10
=> (b3-3a2b)2=102
b6-6a2b4+9a4b2=100
ta có: a6-6a4b2+9a2b4+b6-6a2b4+9a4b2=25+100
a6+3a4b2+3a2b4+b6=125
(a2+b2)3=53
=> a2+b2=5
vậy a2+b2=5