K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

\(ac=b^2,ab=c^2\Rightarrow ac.ab=b^2.c^2\Rightarrow a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\left(a,b\ne0\right)\)

Mà \(ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\) \(\left(b,c\ne0\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

      \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\) (vì \(a+b+c\ne0\) )

\(\Rightarrow a=b=c\)

Ta có: \(\frac{b^{3333}}{a^{1111}.c^{2222}}=\frac{b^{3333}}{b^{1111}.b^{2222}}=\frac{b^{3333}}{b^{3333}}=1\) (vì a = b = c và b khác 0)

Chúc bạn học tốt.

18 tháng 2 2022

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

18 tháng 2 2022

Ta có \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{b}{c}\right)^2=\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}\)

Vậy .....

22 tháng 6 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)

Ta có:\(\frac{a^2+ac}{c^2-ac}=\frac{b^2k^2+bk.dk}{d^2k^2-bk.dk}=\frac{bk^2\left(b+d\right)}{dk^2\left(d-b\right)}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\)(1)

\(\frac{b^2+bd}{d^2-bd}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\)(2)

Từ 1 và 2 =>\(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)
 

22 tháng 2 2018

What là cái gì?

15 tháng 9 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

Ta có: \(\frac{a^2+ac}{c^2-ac}=\frac{b^2.k^2+bk.dk}{d^2.k^2-bk.dk}=\frac{bk^2.\left(b+d\right)}{dk^2.\left(d-b\right)}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\) (1)

\(\frac{b^2+bd}{d^2-bd}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\) (2)

Từ (1) và (2) => \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\left(đpcm\right).\)

Chúc bạn học tốt!


Bài 2:

a: Gọi I là trung điểm của MC

Ta có: \(MI=IC=\dfrac{MC}{2}\)

\(AM=\dfrac{MC}{2}\)

Do đó: AM=MI=IC

=>AM=MI

=>M là trung điểm của AI

Xét ΔBMC có

D,I lần lượt là trung điểm của CB,CM

=>DI là đường trung bình của ΔBMC

=>DI//BM và \(DI=\dfrac{BM}{2}\)

DI//BM

O\(\in\)BM

Do đó: DI//OM

Xét ΔADI có

M là trung điểm của AI

MO//DI

Do đó: O là trung điểm của AD

b: Xét ΔADI có O,M lần lượt là trung điểm của AD,AI

=>OM là đường trung bình của ΔADI

=>\(OM=\dfrac{1}{2}DI=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BM=\dfrac{1}{4}BM\)

Bài 1:

a: \(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}\)

=>\(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\)

=>\(\dfrac{AB-AB'}{AB'}=\dfrac{AC-AC'}{AC'}\)

=>\(\dfrac{BB'}{AB'}=\dfrac{CC'}{AC'}\)

=>\(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)

b: Ta có: \(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)

=>\(\dfrac{AB'+BB'}{BB'}=\dfrac{AC'+CC'}{CC'}\)

=>\(\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\)

=>\(\dfrac{BB'}{AB}=\dfrac{CC'}{AC}\)

7 tháng 3 2020

3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:

A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2

C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2

Chúc bạn học tốt!