K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2020

@Nguyễn Lê Phước Thịnh

@Nguyễn Việt Lâm

@Akai Haruma

Vì \(a\ge0\),\(b\ge0\),\(c\ge0\),áp dụng bđt Cauchy cho 3 số dương a,b,c ta có

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ac}\)

Nhân từng vế bđt trên =>đpcm

7 tháng 5 2019

\(\text{có:}\frac{k}{n}+\frac{n}{k}\ge2\Leftrightarrow\frac{k}{n}-2+\frac{n}{k}\ge0\Leftrightarrow\frac{k}{n}-2\sqrt{\frac{k}{n}}.\sqrt{\frac{n}{k}}+\frac{n}{k}\ge0\Leftrightarrow\left(\sqrt{\frac{k}{n}}-\sqrt{\frac{n}{k}}\right)^2\ge0\forall k,n>0\)

\(\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)

\(\Leftrightarrow\left(ab+ac+b^2+bc\right).\left(a+c\right)\ge8abc\)

\(\Leftrightarrow a^2b+a^2c+ab^2+abc+abc+ac^2+b^2c+bc^2\ge8abc\)

\(\Leftrightarrow2+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\ge8\)

\(\Leftrightarrow2+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge8\)(luôn đúng với mọi a,b,c >=0)

9 tháng 8 2017

mịa c đâu ra vậy

9 tháng 8 2017

Ta có :

\(a-\sqrt{a}+\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\forall a\ge0\Rightarrow a+\frac{1}{4}\ge\sqrt{a}\)

\(b-\sqrt{b}+\frac{1}{4}=\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\forall b\ge0\Rightarrow b+\frac{1}{4}\ge\sqrt{b}\)

\(\Rightarrow a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(đpcm)

Ta có: \(A=\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\)

\(\Leftrightarrow A+4=\frac{a-d}{d+b}+1+\frac{d-b}{b+c}+1+\frac{b-c}{c+a}+1+\frac{c-a}{a+d}+1\)

\(\Leftrightarrow A+4=\frac{a+b}{d+b}+\frac{d+c}{b+c}+\frac{b+a}{c+a}+\frac{c+d}{a+d}\)

\(\Leftrightarrow A+4=\left(a+b\right)\left(\frac{1}{d+b}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{xy}\)với mọi x,y>0 

Ta có: \(A+4\ge\frac{4\left(a+b\right)}{a+b+c+d}+\frac{4\left(d+c\right)}{a+b+c+d}\)

\(A+4\ge\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

\(A\ge0\)(dpcm)

17 tháng 5 2018

Vì \(a,b,c\ge0\)Nên ta nhân a+b+c vào hai vế của bất đẳng thức :

Ta được:\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)

\(\Leftrightarrow\frac{a}{a}+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{b}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{c}{c}\ge9\)

\(\Leftrightarrow3+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)-9\ge0\)(2)

Lại có \(ab\ge0\)

\(\Rightarrow\frac{\left(a-b\right)^2}{ab}\ge0\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\) 

Tương tự:\(\frac{c}{a}+\frac{a}{c}\ge2;\frac{b}{c}+\frac{c}{b}\ge2\)(1)

Từ (1),(2),(3) \(\Rightarrow3+2+2+2-9\ge0\)(luôn đúng)

Vậy..........................................................................................

Dấu "=" <=> a=b=c

Nếu như tớ làm đúng thì bạn k cho tớ với nhé!!!!!!!!!!!!!!!!!!

Thanks bạn trước! 

17 tháng 5 2018

Áp dụng bất đẳng thức Cauchy - Schwarz dạng engel , ta có 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

Đẳng thức xảy ra <=> a = b = c 

17 tháng 5 2018

Áp dụng BĐT Cô - Si dạng Engel , ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)\(\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\)

Đẳng thức xảy ra khi và chỉ khi : a = b = c

17 tháng 5 2018

\(bpt\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

C-S: \(\left\{{}\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\end{matrix}\right.\)

Nhân theo vế suy ra đpcm

p/s: @Phùng Khánh Linh. Minh từng nói học toán phải từ gốc đến ngọn. Thực tế lp 8 còn ko biết đến C-S Engel là gì. Giải nên thiết thực với thực tế. T nói thế thôi ( góp ý hết sức nhẹ nhàng và éo tình cảm)

2 tháng 12 2016

Đặt cái ban đầu là A

Dầu tiên ta có

\(\text{(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b)}\)

\(=4\left(a+b+c+d\right)^2\)

Ta có: \(\frac{a-b}{a+2b+c}+\frac{1}{2}=\frac{1}{2}.\frac{3a+c}{a+2b+c}=\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)

Tương tự ta có

\(\frac{b-c}{b+2c+d}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}\)

\(\frac{c-d}{c+2d+a}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}\)

\(\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}\)

Cộng vế theo vế ta được

\(\frac{a-b}{a+2b+c}+\frac{1}{2}+\frac{b-c}{b+2c+d}+\frac{1}{2}+\frac{c-d}{c+2d+a}+\frac{1}{2}+\frac{d-a}{d+2a+b}+\frac{1}{2}=\frac{1}{2}.\frac{\left(3d+b\right)^2}{\left(3d+b\right)\left(d+2a+b\right)}+\frac{1}{2}.\frac{\left(3c+a\right)^2}{\left(3c+a\right)\left(c+2d+a\right)}+\frac{1}{2}.\frac{\left(3b+d\right)^2}{\left(3b+d\right)\left(b+2c+d\right)}+\frac{1}{2}.\frac{\left(3a+c\right)^2}{\left(3a+c\right)\left(a+2b+c\right)}\)

\(\ge\frac{1}{2}.\frac{\left(3a+c+3b+d+3c+a+3d+b\right)^2}{\left(3a+c\right)\left(a+2b+c\right)+\left(3b+d\right)\left(b+2c+d\right)+\left(3c+a\right)\left(c+2d+a\right)+\left(3d+b\right)\left(d+2a+b\right)}\)

\(=\frac{1}{2}.\frac{16\left(a+b+c+d\right)^2}{4\left(a+b+c+d\right)^2}=2\)

\(\Rightarrow A+2\ge2\)

\(\Leftrightarrow A\ge0\)

4 tháng 12 2016

=4(a+b+c+d)2

Ta có: a−ba+2b+c +12 =12 .3a+ca+2b+c =12 .(3a+c)2(3a+c)(a+2b+c) 

Tương tự ta có

b−cb+2c+d +12 =12 .(3b+d)2(3b+d)(b+2c+d) 

c−dc+2d+a +12 =12 .(3c+a)2(3c+a)(c+2d+a) 

d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) 

Cộng vế theo vế ta được

a−ba+2b+c +12 +b−cb+2c+d +12 +c−dc+2d+a +12 +d−ad+2a+b +12 =12 .(3d+b)2(3d+b)(d+2a+b) +12 .(3c+a)2(3c+a)(c+2d+a) +12 .(3b+d)2(3b+d)(b+2c+d) +12 .(3a+c)2(3a+c)(a+2b+c) 

≥12 .(3a+c+3b+d+3c+a+3d+b)2(3a+c)(a+2b+c)+(3b+d)(b+2c+d)+(3c+a)(c+2d+a)+(3d+b)(d+2a+b) 

=12 .16(a+b+c+d)24(a+b+c+d)2 =2

⇒A+2≥2

18 tháng 4 2020

what la gi ?