Giúp mình. Cho a,b>0; a+b=1. CMR: \(\dfrac{1}{a^2+b^2}\) + \(\dfrac{3}{2ab}\) \(\ge\) 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài này có nhiều cách chứng minh
1) ta có (a - b)^2 ≥ 0 ,<=> a^2 + b^2 ≥ 2ab <=> a^2 + b^2 + 2ab ≥ 4ab
<=> (a + b)^2 ≥4ab , vì a , b > 0 nên a + b > 0
=> a + b/ab ≥ 4/ a + b <=> 1/a + 1/b ≥ 4/a + b (đpcm)
2) áp dụng BĐT Cô si cho hai số dương a và b , ta có
a + b ≥ 2 √ab và 1/a + 1/b ≥ 1/ √ab
=> (a + b)(1/a + 1/b) ≥ 4 => 1/a + 1/b ≥ 4/a + b
dấu "=" xảy ra <=> a = b
lời giải dễ hiểu nhất như thế này này (a+b)(1/a+1/b)=1+a/b+b/a+1=2+a/b+b/a mà ta có a/b+b/a luôn luôn lớn hơn hoặc bằng 2 vầy suy ra ĐPCM(để chứng minh a/b+b/c lớn hơn hoặc bằng 2 lấy a/b+b/a-2=a^2+b^2-2ab/ab=(a-b)^2/ab luôn lớn hơn hoặc bằng o vậy a/b+b/c luôn lớn hơn hoặc bằn 2)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có
\(M=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Lại áp dụng bất đẳng thức : \(\frac{x}{y}+\frac{y}{x}\ge2\)vào vế trên ta được \(M\ge3+2+2+2=9\left(dpcm\right)\)
Áp dụng bất đẳng thức Bunyakovsky , ta có
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\frac{\sqrt{a}}{\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}}+\frac{\sqrt{c}}{\sqrt{c}}\right)^2=\left(1+1+1\right)^2=9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét hiệu:
\(\frac{a}{b}-\frac{a+2007}{b+2007}=\frac{a.\left(b+2007\right)-b.\left(a+2007\right)}{b.\left(b+2007\right)}=\frac{ab+2007a-ab+2007b}{b.\left(b+2007\right)}=\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}\)
Xét 3 trường hợp:
TH1: a=b\(\Rightarrow\)a-b=0\(\Rightarrow\)\(\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}=\frac{2007.0}{b.\left(b+2007\right)}=0\)\(\Rightarrow\frac{a}{b}=\frac{a+2007}{b+2007}\)
TH2: a<b\(\Rightarrow\)a-b<0\(\Rightarrow\)\(2007.\left(a-b\right)< 0\Rightarrow\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}< 0\)\(\Rightarrow\frac{a}{b}< \frac{a+2007}{b+2007}\)
TH3: a>b\(\Rightarrow\)a-b>0\(\Rightarrow\)\(2007.\left(a-b\right)>0\Rightarrow\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}>0\)\(\Rightarrow\frac{a}{b}>\frac{a+2007}{b+2007}\)
Vậy với a=b thì \(\frac{a}{b}=\frac{a+2007}{b+2007}\)
a<b thì \(\frac{a}{b}< \frac{a+2007}{b+2007}\)
a>b thì \(\frac{a}{b}>\frac{a+2007}{b+2007}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Áp dụng a/b < 1 <=> a/b < a+n/b+n (a,b,n thuộc N*)
a/b = 1 <=> a/b = a+n/b+n (a,b,n thuộc N*)
a/b > 1 <=> a/b > a+n/b+n (a,b,n thuộc N*)
+ Với a/b < 1 <=> a/b < a+1/b+1
+ Với a/b = 1 <=> a/b = a+1/b+1
+ Với a/b > 1 <=> a/b > a+1/b+1
2) lm tương tự bài 1
1) Trường hợp a cũng là nguyên duơng
Xét a<b và a>b.
Xét a<b trước, ta có:
1-a/b=(b-a)/a..............(1)
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1...
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn xem lại đề bài nhé :)
Nhận xét : Với \(x\ge0\), ta có \(x=\sqrt{x^2}\)
Đặt \(x=\sqrt{A-\sqrt{B}}+\sqrt{A+\sqrt{B}}\), ta có \(x\ge0\), từ nhận xét suy ra \(x=\sqrt{x^2}\)
Ta có : \(x^2=2A+2\sqrt{A^2-B}=4\left(\frac{A+\sqrt{A^2-B}}{2}\right)\)
\(\Rightarrow x=2\sqrt{\frac{A+\sqrt{A^2-B}}{2}}\)(1). Tương tự, đặt \(y=\sqrt{A+\sqrt{B}}-\sqrt{A-\sqrt{B}}\).
Xét : \(A+\sqrt{B}-\left(A-\sqrt{B}\right)=2\sqrt{B}>0\Leftrightarrow A+\sqrt{B}>A-\sqrt{B}\)
\(\Leftrightarrow\sqrt{A+\sqrt{B}}>\sqrt{A-\sqrt{B}}\Rightarrow y>0\). Áp dụng nhận xét, ta cũng có \(y=\sqrt{y^2}\)
Ta có : \(y=\sqrt{A+\sqrt{B}}-\sqrt{A-\sqrt{B}}\Leftrightarrow y=2A-2\sqrt{A^2-B}=4\left(\frac{A-\sqrt{A^2-B}}{2}\right)\)
\(\Rightarrow y=2\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\) (2)
Cộng (1) và (2) theo vế : \(x+y=2\left(\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\right)\)
\(2\sqrt{A+\sqrt{B}}=2\left(\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\right)\)
\(\Leftrightarrow\sqrt{A+\sqrt{B}}=\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\)(đpcm)
Áp dụng BĐT AM-GM ta có:
\(ab\le\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{2}{2ab}\)
\(\ge\dfrac{\left(1+1\right)^2}{a^2+b^2+2ab}+\dfrac{2}{2ab}\)
\(\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{2}{2\cdot\dfrac{1}{4}}=4+\dfrac{2}{\dfrac{1}{2}}=8\)
Xảy ra khi \(a=b=\dfrac{1}{2}\)