K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Bài 1:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{a^4}{a^2b+9a}+\frac{b^4}{ab^2+9b}+\frac{b^4}{b^2c+9b}+\frac{c^4}{bc^2+9c}+\frac{c^4}{c^2a+9c}+\frac{a^4}{ca^2+9a}\)

\(\ge \frac{(a^2+b^2+b^2+c^2+c^2+a^2)^2}{ab(a+b)+bc(b+c)+ca(c+a)+18(a+b+c)}=\frac{4(a^2+b^2+c^2)^2}{ab(a+b)+bc(b+c)+ca(c+a)+162}\)

Áp dụng BĐT AM-GM:

\(a^3+b^3+c^3=\frac{a^3+b^3+b^3}{3}+\frac{b^3+c^3+c^3}{3}+\frac{c^3+a^3+a^3}{3}\geq ab^2+bc^2+ca^2\)

Tương tự: \(a^3+b^3+c^3\geq a^2b+b^2c+c^2a\)

\(\Rightarrow a^3+b^3+c^3\geq \frac{ab(a+b)+bc(b+c)+ca(c+a)}{2}\)

\(\Rightarrow a^3+b^3+c^3+ab(a+b)+bc(c+a)+ca(c+a)\geq \frac{3}{2}[ab(a+b)+bc(b+c)+ca(c+a)]\)

\(\Leftrightarrow (a^2+b^2+c^2)(a+b+c)\geq \frac{3}{2}[ab(a+b)+bc(b+c)+ca(c+a)]\)

\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\leq 6(a^2+b^2+c^2)\)

Do đó: \(\text{VT}\geq \frac{4(a^2+b^2+c^2)^2}{6(a^2+b^2+c^2)+162}\)

Đặt \(a^2+b^2+c^2=t\). Dễ thấy \(t\geq \frac{(a+b+c)^2}{3}=27\). Khi đó:

\(\frac{4(a^2+b^2+c^2)^2}{6(a^2+b^2+c^2)+162}-9=\frac{4t^2}{6t+162}-9=\frac{2(t-27)(2t+27)}{6t+162}\geq 0, \forall t\geq 27\)

\(\Rightarrow \text{VT}\geq \frac{4t^2}{6t+162}\geq 9\) (đpcm). Dấu "=" xảy ra khi $a=b=c=3$

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Bài 2:

Áp dụng BĐT AM-GM:

\(\text{VT}=a-\frac{ab^2}{a+b^2}+b-\frac{bc^2}{b+c^2}+c-\frac{ca^2}{c+a^2}=(a+b+c)-\left(\frac{ab^2}{a+b^2}+\frac{bc^2}{b+c^2}+\frac{ca^2}{c+a^2}\right)\)

\(\geq (a+b+c)-\left(\frac{ab^2}{2\sqrt{ab^2}}+\frac{bc^2}{2\sqrt{bc^2}}+\frac{ca^2}{\sqrt{ca^2}}\right)=(a+b+c)-\frac{1}{2}(\sqrt{ab^2}+\sqrt{bc^2}+\sqrt{ca^2})\)

\(\geq (a+b+c)-\frac{1}{2}\left(\frac{ab+b}{2}+\frac{bc+c}{2}+\frac{ca+a}{2}\right)=\frac{3(a+b+c)-(ab+bc+ac)}{2}\)

Tiếp tục áp dụng BĐT AM-GM:

\((a+b+c)^2\geq 3(ab+bc+ac)=(a^2+b^2+c^2)(ab+bc+ac)\geq (ab+bc+ac)^2\)

\(\Rightarrow a+b+c\geq ab+bc+ac\)

Do đó: \(\text{VT}\geq \frac{3(a+b+c)-(a+b+c)}{2}=\frac{a+b+c}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

13 tháng 8 2017

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

13 tháng 8 2017

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

29 tháng 8 2016

Bài 1: 

a) + Nếu a/b > 1 thì a/b > b/b => a > b

+ Nếu a > b thì a/b > b/b => a/b > 1 (đpcm)

b) + Nếu a/b < 1 thì a/b < b/b => a < b

+ Nếu a < b thì a/b < b/b => a/b < 1 (đpcm)

Bài 2: 

Do \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)

=> \(\frac{a.d}{b.c}< 1\Rightarrow a.d< b.c\left(đpcm\right)\)

2 tháng 9 2016

bai2

vi a/b > c/d

=>ad/bd >cd/bd

và ad/bd , cd/bd có mẫu chung là bd

<=>ad>cd

2 tháng 10 2018

do b,d>0 nhân 2 vế của a/b=c/d với bd

ta có a/b>c/d=> a+d>b+c

2 tháng 10 2018

Bạn trình bày rõ hơn được không?

12 tháng 2 2018

bai 1; đề thiếu bn ơi 

bài 2 ;

s =-a+b+c-c+b+a-a-b

s= b-a=-(a-b)               (a>b, a-b>0)

/s/=a-b