K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

\(a^2+b^2=4\Leftrightarrow\left(a+b\right)^2-2ab=4\Leftrightarrow\left(a+b\right)^2-4=2ab\)

\(2A=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{a+b+2}=a+b-2\)

áp dụng cosi ta có: \(a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow\left(a+b\right)^2\le8\Leftrightarrow a+b\le\sqrt{8}=2\sqrt{2}\Rightarrow a+b-2\le2\sqrt{2}-2\)

=> Max A= 2căn 2-2 <=> a=b= căn 2

2 tháng 9 2019

ta có: a + b=-2 ; a^2 + b^2 = 52

=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4

=> 52 + 2ab= 4

=> 48= -2ab

=> ab= -24

a^3 + b^3 = (a+b)( a^2-ab+ b^2)

=> a^3 + b^3 = -2.(52+24)= -2. 76= -152

6 tháng 10 2023

Ta có công thức tổng quát như sau:

\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)

Áp dụng ta có:

\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\) 

\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)

______

\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)

\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)

_____

\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)

\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)

1 tháng 6 2021

b) Áp dụng bđt Holder ta có:

\(\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\left(a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\right)\ge\left(a^2+b^2+c^2\right)^3\)

Lại có \(a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\le2a^2\left(b^2+c^2\right)+2b^2\left(c^2+a^2\right)+2c^2\left(a^2+b^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\sqrt{\dfrac{\left(a^2+b^2+c^2\right)^3}{4\left(a^2b^2+b^2c^2+c^2a^2\right)}}\).

Ta chỉ cần chứng minh: \(\dfrac{\sqrt[4]{27\left(a^4+b^4+c^4\right)}}{2}\le\sqrt{\dfrac{\left(a^2+b^2+c^2\right)^3}{4\left(a^2b^2+b^2c^2+c^2a^2\right)}}\Leftrightarrow27\left(a^4+b^4+c^4\right)\left(a^2b^2+b^2c^2+c^2a^2\right)^2\le\left(a^2+b^2+c^2\right)^3\).

Áp dụng bđt AM - GM ta có \(27\left(a^4+b^4+c^4\right)\left(a^2b^2+b^2c^2+c^2a^2\right)^2\le\left(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\right)=\left(a^2+b^2+c^2\right)^2\).

Vậy ta có đpcm.

1 tháng 6 2021

a) Câu này cũng tương tự: Áp dụng bđt Holder ta có:

\(\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\ge\left(a^2+b^2+c^2\right)^3\).

Đến đây làm tương tự là ok

5 tháng 7 2017

Bài 1:

\(a^2+b^2+c^2=16\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=16\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=16\Rightarrow ab+bc+ac=-8\)\(\Rightarrow\left(ab+bc+ac\right)^2=64\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=64\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=64\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=64\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=16^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=256-2.64=128\)

3 tháng 10 2017

Fan sơn tùng là đây

14 tháng 3 2019

ta có \(a^2,b^2,c^2\ge0\)

mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)

Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai 

còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik 

14 tháng 3 2019

Thank you

19 tháng 6 2016

Lần sau bạn vào fx viết đề cho rõ nhé :))

\(Gt\Leftrightarrow a^2+b^2+ab=c^2+d^2+cd\)

Bình 2 vế đc:

\(a^4+b^4+2a^3b+2ab^3+3a^2b^2\)\(=c^4+d^4+2c^3d+2cd^3+3c^2d^2\)

\(\Leftrightarrow2\left(a^4+b^4+2a^3b+2ab^3+3a^2b^2\right)\)\(=2\left(c^4+d^4+2c^3d+2cd^3+3c^2d^2\right)\)

\(\Leftrightarrow a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)