K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo đề ta có: \(2x=2y=5z\Leftrightarrow\frac{2x}{10}=\frac{2y}{10}=\frac{5z}{10}\Leftrightarrow\frac{x}{5}=\frac{y}{5}=\frac{z}{2}\)

\(x-y+z=-22\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{5}=\frac{z}{2}=\frac{z-y+z}{2-5+2}=\frac{-22}{-1}=22\)

Do đó: 

\(\frac{x}{5}=22\Rightarrow x=5.22=110\)

\(\frac{y}{5}=22\Rightarrow y=5.22=110\)

\(\frac{z}{2}=22\Rightarrow z=44\)

Vậy .....

hok tốt!!

9 tháng 3 2020

ĐỀ SAI NHÉ. X-Y+Z = - 22

2x=2y=5z suy ra x=y, z= 2y/5

mà x-y+z = -22

nên y-y+2y/5=-22

suy ra y=-55

suy ra x=-55

z=-22

a: |x+1|+(2y-1)^2=3

mà x,y nguyên

nên (2y-1)^2=1 và |x+1|=2

=>\(\left\{{}\begin{matrix}x+1\in\left\{2;-2\right\}\\2y-1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-3\right\}\\y\in\left\{1;0\right\}\end{matrix}\right.\)

c: |3x-1|+|2y-5|=3

Th1: |3x-1|=0 và |2y-5|=3 

=>3x-1=0 và 2y-5 thuộc {3;-3}

=>y thuộc {4;1}(nhận) và x=1/3(loại)

TH2: |3x-1|=1 và |2y-5|=2

=>3x-1 thuộc {1;-1} và 2y-5 thuộc {2;-2}

=>x thuộc {2/3;0} và y thuộc {7/2;3/2}

=>Loại

TH3: |3x-1|=2 và |2y-5|=1

=>3x-1 thuộc {2;-2} và 2y-5 thuộc {1;-1}

=>x=3 và y thuộc {3;2}

TH4: |3x-1|=3 và |2y-5|=0

=>3x-1 thuộc {3;-3} và 2y-5=0

=>y=5/2(loại)

d: |2x+1|+|y-5|=0

=>2x+1=0 và y-5=0

=>y=5(nhận) và x=-1/2(loại)

=>Ko có cặp số (x,y) nào thỏa mãn

15 tháng 7 2015

tick đúng cho ng` ta đi

10 tháng 7 2016

mình cũng đang hắc búa bài này lắm, ai giải đc thì giải hộ tui vs nha. cái đồ k bt làm lại còn bảo k đúng để làm chó à, bực người. đã đang k làm đc toán sẵn gặp con này chắc tui chết mất 

21 tháng 7 2016

Vì 2x = 3y; 2y = 5z nên \(\frac{x}{3}=\frac{y}{2}\) và \(\frac{y}{5}=\frac{z}{2}\)

=> \(\frac{x}{15}=\frac{y}{10}\) và \(\frac{y}{10}=\frac{z}{4}\)

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{4}\)

=> \(\frac{2x}{30}=\frac{y}{10}=\frac{3z}{12}\)

Áp dụng dãy tỉ số bằng nhau ta có 

\(\frac{2x}{30}=\frac{y}{10}=\frac{3z}{12}=\frac{2x+y-3z}{30+10-12}=\frac{1}{28}\)

=> x = 15/28

y = 5/14

z = 1/7

Chúc bạn làm bài tốt

23 tháng 7 2016

thank youhihi

a: =>5x-2=0 hoặc 2x+1/3=0

=>x=-1/6 hoặc x=2/5

b: Đặt x/2=y/3=k

=>x=2k; y=3k

xy=54

=>6k^2=54

=>k^2=9

=>k=3 hoặc k=-3

TH1: k=3

=>x=6; y=9

TH2: k=-3

=>x=-6; y=-9

c: =>5050x=-213

=>x=-213/5050

21 tháng 10 2020

a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

        \(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58

APa dụng TC dãy TSBN ta có

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)

\(\Rightarrow x=42;y=28;z=12\)

Các câu còn lại tương tự

tính chất dãy tỉ số bằng nhau ak? Cá là trong violympic

11 tháng 2 2016

|x-2y| =5 <=> có 2TH x-2y=5 hoặc x-2y = -5 <=> x= 5+2y hoặc x = -5+2y.
TH1: x=5+2y <=> thay giá trị này của x vào pt 2x=3y => y=-10,x= -15. Muốn tìm z thì bạn thay x hoặc y vào pt ở đề bài, x hoặc y thay vào đều được: z= -6
TH2:Tương tự x=-5+2y <=> y=10, x= 15,z= 6

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

24 tháng 10 2016

Ta có:

\(2x=3y=5z\)

\(=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{3x}{\frac{3}{2}}=\frac{2y}{\frac{2}{3}}=\frac{5z}{1}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{3x}{\frac{3}{2}}=\frac{2y}{\frac{2}{3}}=\frac{5z}{1}=\frac{3x-2y-5z}{\frac{3}{2}-\frac{2}{3}-1}=\frac{-45}{\frac{-1}{6}}=45.6=270\)

\(\Rightarrow\begin{cases}x=270.\frac{1}{2}=135\\y=270.\frac{1}{3}=90\\z=270.\frac{1}{5}=54\end{cases}\)

Vậy x = 135; y = 90; z = 54

24 tháng 10 2016

Giải( sửa lại )

Ta có: \(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{3x}{\frac{3}{2}}=\frac{2y}{\frac{2}{3}}=\frac{5z}{1}=\frac{3x-2y-5z}{\frac{3}{2}-\frac{2}{3}-1}=\frac{-45}{\frac{-1}{6}}=270\)

+) \(\frac{x}{\frac{1}{2}}=270\Rightarrow x=135\)

+) \(\frac{y}{\frac{1}{3}}=270\Rightarrow y=90\)

+) \(\frac{z}{\frac{1}{5}}=270\Rightarrow z=54\)

Vậy bộ số \(\left(x,y,z\right)\)\(\left(135,90,54\right)\)