Cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn sao cho góc MAB=60 độ . Kẻ
dây MN vuông góc với AB tại H.
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM):
2. Chứng minh \(MN^2\) = 4 AH .HB .
3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
4. Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F.Chứng minh ba điểm N; E; F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đường tròn (O’) cắt đường tròn (O ; OA) tại A và B nên OO’ là trung trực của AB
Suy ra : OO’ ⊥ AB (1)
Vì đường tròn (O’) cắt đường tròn (O ; OC) tại C và D nên OO’ là trung trực của CD
Suy ra : OO’ ⊥ CD (2)
Từ (1) và (2) suy ra : AB // CD.
a: ΔOAB cân tại O
mà OM là đường cao
nên OM là phân giác
Xét ΔOAM và ΔOBM có
OA=OB
góc AOM=góc BOM
OM chung
=>ΔOAM=ΔOBM
=>góc OBM=90 độ
=>MB là tiếp tuyến của (O)
b:F ở đâu vậy bạn?
Đáp số:a)12,56cm
b)bằng nhau các bạn nhớ k cho mình nha mình đang bị âm điểm ^_^
A B O M N
a, Chu vi của hình tròn tâm O là:
8 x 3,14 = 25,12 (cm)
Đường kính AO có độ dài là:
8 : 2 = 4 (cm)
Chu vi của hình tròn tâm M là:
4 x 3,14 = 12,56 (cm)
Đường kính OB có độ dài là:
8 - 4 = 4 (cm)
Chu vi của hình tròn tâm N là:
4 x 3,14 = 12,56 (cm)
b, Tổng chu vi của hai hình tròn tâm M và N là:
12,56 + 12,56 = 25,12 (cm)
Vì 25,12 = 25,12 (cm) nên tổng chu vi của hai hình tròn tâm M và N = chu vi hình tròn tâm O.
Đáp số: a, 25,12 cm; 12,56 cm; 12,56 cm
b, bằng nhau
1: Xét (O) có
ΔAMB nội tiếp đường tròn
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét (O) có
ΔANB nội tiếp đường tròn
AB là đường kính
Do đó: ΔANB vuông tại N
Xét (O) có
OH là một phần đường kính
MN là dây
OH\(\perp\)MN tại H
Do đó: H là trung điểm của MN
Xét ΔBMH vuông tại H và ΔBNH vuông tại H có
BH chung
MH=NH
Do đó: ΔBMH=ΔBNH
Suy ra: BM=BN
hay BN\(\in\)(B;BM)
Xét (B;BM) có
BM là bán kính
AM\(\perp\)BM tại M
Do đó: AM là tiếp tuyến của (B;BM)
Xét (B;BM) có
BN là bán kính
AN\(\perp\)BN tại N
Do đó:AN là tiếp tuyến của (B;BN)