Cho 2 đường thẳng xy và x'y' cắt nhau tại O; Ot là tia phân giác của xÔx', Ot' là tia phân giác của yÔy'.
a) Chứng tỏ tÔx= t'Ôy
b) Chứng tỏ 2 tia Ot, Ot' cùng nằm trên một đường thẳng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x y x' y' A B M N
CM: a) Do AM là tia p/giác của góc xAB nên :
\(\widehat{xAM}=\widehat{MAB}=\frac{\widehat{xAB}}{2}\)
Do BN là tia p/giác của góc ABy' nên :
\(\widehat{ABN}=\widehat{NBy'}=\frac{\widehat{ABy'}}{2}\)
Mà \(\widehat{xAB}=\widehat{ABy'}\) (so le trong vì xy // x'y')
=> \(\widehat{MAB}=\widehat{ABN}\)
mà 2 góc này ở vị trí so le trong
=> AM // BN (Đpcm)
b) Xét t/giác AMB và t/giác BNA
có : \(\widehat{MAB}=\widehat{ABN}\)(cmt)
AB : chung
\(\widehat{MBA}=\widehat{NAB}\) (so le trong vì xy // x'y')
=> t/giác AMB = t/giác BNA (g.c.g)
=> \(\widehat{AMB}=\widehat{ANB}\)(2 góc t/ứng)
A Phạm Tuấn Kiệt ah, bán bút thj guj cho e 1 cáj nhé !!!!!!!!!!!!
P/s: and