Cho tam giác ABC với BM là tia phân giác của \(\widehat{ABC}\); CN là tia phân giác của \(\widehat{ACB}\)\(\left(M\in AC;N\in AB\right)\)và BM = CN.
Chứng minh rằng: Tam giác ABC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACN có
\(\widehat{A}\) chung
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
Do đó: ΔABM=ΔACN
Suy ra: BM=CN và AM=AN
hay ΔAMN cân tại A
b: Xét ΔABC có
AN/AB=AM/AC
Do đó: MN//BC
A B C M N K
Không mất tính tổng quát; giả sử ^ABC > ^ACB
Dựng K là đỉnh thứ tư của hình bình hành BMKN => ^NBM = ^NKM = ^CBM (1)
Khi đó: ^ABC > ^ACB => 1/2.^ABC > 1/2.^ACB => ^CBM > ^BCN = ^NCM (2)
Từ (1) và (2) => ^NKM > ^NCM (*)
Xét \(\Delta\)CMB và \(\Delta\)BNC có: Cạnh BC chung; ^CBM > ^BCN (cmt); BM = CN => CM > BN (3)
Ta có: Tứ giác BMKN là hình bình hành => BN = MK (4)
Từ (3) và (4) => CM > MK
Trong \(\Delta\)CKM có: CM > MK (cmt) => ^MKC > ^MCK (**)
Từ (*) và (**) => ^NKM + ^MKC > ^NCM + ^MCK => ^NKC > ^NCK
Xét \(\Delta\)CNK có: ^NKC > ^NCK => CN > NK. Mà NK = BM (Do tứ giác BMKN là hbh)
Nên CN > BM. Lại có: CN = BM (theo gt) ---> Mâu thuẫn ---> Giả sử sai
Tiếp theo bn giả sử ^ABC < ^ACB; c/m tương tự rồi chỉ ra nó vô lí
Từ đó suy ra: ^ABC = ^ACB => \(\Delta\)ABC cân tại A (đpcm).