K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2023

A B C H D E F M K N

a/

\(BH\perp AC\Rightarrow HF\perp AC;ME\perp AC\) => ME//HF

\(AC\perp AB\Rightarrow EH\perp HF;MF\perp BH\Rightarrow MF\perp HF\) => EH//MF

=> MEHF là hình bình hành (tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => ME=HF (cạnh đối hbh)

b/

\(\widehat{BMD}+\widehat{ABC}=90^o\)

\(\widehat{CME}+\widehat{ACB}=90^o\)

\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{BMD}=\widehat{CME}\)

Mà \(\widehat{CME}=\widehat{CBH}\) (góc đồng vị)

\(\Rightarrow\widehat{BMD}=\widehat{CBH}\)

Xét tg vuông DBM và tg vuông FMB có

\(\widehat{BMD}=\widehat{CBH}\) 

BM chung 

=> tg DBM = tg FMB (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

c/

Ta có ME = HF (cmt)

tg DBM = tg FMB (cmt) => MD = BF

=> MD+ME=BF+HF=BH không đổi

d/

Từ D dựng đt // AC cắt BC tại N

\(\Rightarrow\widehat{BND}=\widehat{ACB}\) Góc đồng vị)

\(\widehat{ABC}=\widehat{ACB}\)

=> \(\widehat{BND}=\widehat{ABC}\) => tg DBN cân tại D => BD=ND (1)

tg DBM = tg FMB (cmt) => BD=MF (2)

Mà MF = EH (cạnh đối hbh) (3)

Mà EH = KC (4)

Từ (1) (2) (3) (4) => ND = KC

Mà ND//AC => ND//KC

=> DEKN là hbh (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)

Mà DK và NC là hai đường chéo của hbh cắt nhau tại trung điểm mỗi đường => trung điểm của KD nằm trên NC mà NC thuộc BC => trung điểm KD nằm trên BC

 

 

 

21 tháng 8 2023

a) Vẽ MH, rõ ràng HEMF có tổng số đo của 4 góc là 360o (vì tổng số đo của 4 góc đó là tổng số đo của các góc của các tam giác FMH và EMH)

Mà theo giả thuyết \(MD\perp AB\)\(ME\perp AC\) và \(MF\perp BH\) nên \(MF\perp ME\). Suy ra HEMF là hình chữ nhật, từ đó ME = HF.

b) Ta có \(\widehat{ABM}=\widehat{ACM}\) (vì tam giác ABC cân tại A) và \(\widehat{FMB}=\widehat{ACM}\) (vì hai góc đồng vị và AC//MF vì \(ME\perp AC\) và \(MF\perp ME\)), suy ra \(\widehat{ABM}=\widehat{FMB}\).

Xét tam giác DBM vuông tại D và FMB vuông tại F có BM là cạnh chung và \(\widehat{ABM}=\widehat{FMB}\), suy ra ΔDBM = ΔFMB (cạnh huyền - góc nhọn)

c) Từ a) và b) suy ra MD = BF, MD + ME = BF + FH = BH. Vậy khi M chạy trên đáy BC thì tổng MD + ME có giá trị không đổi.

18 tháng 3 2021

a/

Xét tg ABM và tg ACM có

MB=MC (đề bài)

AB=AC (Do tg ABC cân tại A)

\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)

=> tg ABM=tg ACM (c.g.c)

Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)

b/

Xét tg vuông BME và tg vuông CMF có

MB=MC

\(\widehat{ABC}=\widehat{ACB}\)

=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M

c/

Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)

\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )

=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\)  (Trong tg can EMF đường phân giác đồng thời là đường cao)

Mà \(AM\perp BC\)

=> EF//BC (cùng vuông góc với AM)

28 tháng 12 2023

δγΣαγηθλΣϕΩβΔ

28 tháng 12 2023

Xét △AMD và △DMC

   AB=AC(giả thuyết)

   Cạnh AM là cạnh chung 

   BM= CM ( M là trung điểm của cạnh BC)

=> △AMD=△DMC

Sorry bạn nhé mk chỉ bt làm câu a thui ☹
   

18 tháng 2 2017

bn tham khảo ở đây nha:http://text.123doc.org/document/658748-6-bai-toan-hinh-4-de-thi-ki-i-toan-8.htm

13 tháng 11 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

6 tháng 1 2018

A B C M D E

a/ \(\Delta ABC\) có : AB = AC

\(\Leftrightarrow\Delta ABC\) cân tại A

\(\Leftrightarrow\widehat{B}=\widehat{C}\) (2 góc ở đáy)

Xét \(\Delta BDM;\Delta CEM\) có :

\(\left\{{}\begin{matrix}\widehat{BDM}=\widehat{CEM}=90^0\\MB=MC\\\widehat{B}=\widehat{C}\end{matrix}\right.\)

\(\Leftrightarrow\Delta BDM=\Delta CEM\left(ch-gn\right)\)

\(\Leftrightarrow MD=ME\)

2 tháng 3 2022

Vì △ABC cân tại A 

=> ABC = ACB

Xét △BDM vuông tại D và △CEM vuông tại E 

Có:    BM = CM (gt)

       DBM = ECM

=> △BDM = △CEM (ch-gn)

=> DM = EM (2 cạnh tương ứng)

Xét △AMD vuông tại D và △AME vuông tại E

Có:  DM = ME (cmt)

       AM là cạnh chung

=> △AMD = △AME (ch-cgv)

=> AD = AE (2 cạnh tương ứng)

Xét △ADE có AD = AE

=> △ADE cân tại A

=> ADC = (180o - A) : 2 (1)

Vì △ABC cân tại A 

=> ABC = (180o - A) : 2 (2)

Từ (1), (2) => ADC = ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> DE // BC (dhnb)

9 tháng 2 2018

A B C D E M K

a) Xét \(\Delta ABM,\Delta ACM\) có:

\(AB=AC\) (\(\Delta ABC\) cân tại A)

\(BM=MC\) (M là trung điểm của BC)

\(AM:Chung\)

=> \(\Delta ABM=\Delta ACM\left(c.c.c\right)\) (*)

b) Xét \(\Delta BDM,\Delta CEM\) có :

\(\widehat{DBM}=\widehat{ECM}\) (Tam giác ACB cân tại A)

\(BM=MC\) (M là trung điểm của BC)

\(\widehat{BDM}=\widehat{CEM}\left(=90^o\right)\)

=> \(\Delta BDM=\Delta CEM\) (cạnh huyền - góc nhọn)

=> \(DM=EC\) (2 cạnh tương ứng)

=> \(\widehat{DAM}=\widehat{EAM}\)

Xét \(\Delta ADM,\Delta AEM\) có :

\(\widehat{ADM}=\widehat{AEM}\left(=90^{^o}\right)\)

\(DM=CE\left(cmt\right)\)

\(\widehat{DAM}=\widehat{EAM}\) (từ *)

=> \(\Delta ADM=\Delta AEM\left(g.c.g\right)\)

=> AD = AE (2 cạnh tương ứng)

Do đó : \(\Delta ADE\) cân tại A => đpcm

Xét \(\Delta ADE\) cân tại A có :

\(\widehat{ADE}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)

Xét \(\Delta ABC\) cân tại A(gt) có :

\(\widehat{ABC}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^O-\widehat{A}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

Do đó : \(DE//BC\left(đpcm\right)\)

c) Ta có : \(DM=EM\left(\Delta BDM=\Delta CEM-cmt\right)\) (3)

Ta dễ dàng chứng minh được : \(\Delta CEM=\Delta KBM\)

Từ đó suy ra : KM = ME (2 cạnh tương ứng)

\(\Leftrightarrow EK=2EM\) (4)

Từ (3) và (4) => \(EK=2MD\)

=> đpcm.

27 tháng 12 2015

tick cho mk đi thì mk làm