14. Cho tam giác ABC ,có đường cao AH ;đường thẳng d//BC ;cắt các cạnh AB,AC và
đường cao AH theo thứ tự các điểm M;N;K
a. CMR: \(\frac{AK}{AH}=\frac{MN}{BC}\)
b. Cho biết AK =\(\frac{2}{3}\)AH và diện tích D ABC là 5cm2.
Tính diện tích tam giác AMN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý pi-ta-go cho tam giácABH:
AB^2= AH^2+BH^2
AH^2=AB^2-BH^2
AH^2=169-BH^2 (1)
Áp dụng định lý pi-ta-go cho tam giác ACH
AH^2=AC^2-HC^2
AH^2=196-HC^2 (2)
Từ(1);(2): BH^2-HC^2=-27(*)
Ta lại có: BH+HC=BC=15
=> HC=15-BH(**)
Thay (**) vào (*): BH^2-(225-30HB+HB^2)=-27
BH^2-225+30HB-HB^2=27
-225+30HB=-27
30HB=198
HB=6,6
Áp dụng định lý pi-ta- go cho tam giác AHB
AH^2=AB^2-BH^2
AH^2=169-43,56
AH^2=125,44
AH=11.2(cm)
Ta có AC2-HC^2=AH^2 và AB2-AH2=AH2 (PI-TA-GO)
suy ra AC^2-HC^2=AB^2-HB^2 => 196-HC^2=169-HB^2 =>HC2-HB2=27 =>(15-HB)2-HB2=27 =>225-30HB=27
=>30HB=198 => HB =198:30=6,6
suy ra \(AH=\sqrt{AB^2-HB^2}=\sqrt{169-43,56}\)\(=11,2\)
Ta có: H B H C = 1 4 ⇒ HC = 4HB
Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:
A H 2 = B H . C H ⇔ 4 2 = 4 B H 2 ⇔ B H = 2 ( c m ) ⇒ C H = 8 ( c m )
Ta có: BC = BH + HC = 2 + 8 = 10 (cm)
Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:
⇒ A B 2 = B H . B C ⇔ A B 2 = 2 . 10 ⇔ A B = 20 = 2 5 ( c m )
Áp dụng định lý Pitago cho ABH vuông tại A có: A B 2 + A C 2 = B C 2
⇔ 20 + A C 2 = 100 ⇔ A C 2 = 80 ⇒ A C = 80 = 4 5 ( c m )
Vậy chu vi tam giác ABC là: 4 5 + 2 5 + 10 = 6 5 + 10 c m
Đáp án cần chọn là: D
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow4HB=HC\)
Xét tam giác ABC vuông tại A có đường cao AH:
\(AH^2=BH.HC\)( hệ thức lượng trong tam vuông)
\(\Rightarrow14^2=HB.4HB\Rightarrow HB=7\left(cm\right)\Rightarrow HC=4HB=28\left(cm\right)\Rightarrow BC=HB+HC=35\left(cm\right)\)Xem tam giác ABC vuông tại A có đường cao AH:
\(\left\{{}\begin{matrix}AB^2=HB.BC\\AC^2=HC.BC\end{matrix}\right.\)(Hệ thức lượng trong tam giác vuông)
\(\Rightarrow\left\{{}\begin{matrix}AB^2=7.35\\AC^2=28.35\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\\AC=14\sqrt{5}\end{matrix}\right.\)
Ta có: \(P_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow4\cdot HB^2=14^2=196\)
\(\Leftrightarrow HB^2=49\)
\(\Leftrightarrow HB=7\left(cm\right)\)
\(\Leftrightarrow HC=28\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
CH/BH=3/4
=>AC/AB=(3/4)^2=9/16
=>AC/9=AB/16=(AC+AB)/(9+16)=14/25=0,56
=>AC=5,04; AB=8,96
BC=căn AC^2+AB^2\(\simeq10,28\)
\(sinC=\dfrac{AB}{BC}\simeq0,87\)
=>góc C=61 độ
=>góc B=29 độ
A B C H 12
a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)
\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)
* Áp dụng hệ thức :
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)
\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)
\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm
\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm
\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)
Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2
A B C H D 15 20
b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
Lại có : \(BC=BD+DC=15+20=35\)cm
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)
\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm
\(\Rightarrow AB=\frac{3}{4}.28=21\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm
\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm
Áp dụng định lí Pytago cho tam giác AHD vuông tại H
\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm