Cho hình thoi ABCD có góc B = 2 lần góc A
1)C/m tam giác BAD là tam giác đều
2)Lấy H thuộc AD;K thuộc CD.Sao cho góc HBK=60o
CMR:△HBK đều
3)CMR:DH+DK ko thay đổi
4)Xác định vị trí điểm H;K.Sao cho HK nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2
tam giác ABM bằng tam giác DBN (c.g.c) nên BM=BN và ABM=DBN ta có ABM+MBD=60 nên DBN+MBD=60 hay MBN =60 tam giác MBN đều
tự vẽ hình nhé .
a) tứ giác ANMD có :
AN = 1/2 AB ; DM = 1/2 CD
\(\Rightarrow\)AN = DM (AB = CD )
mà AB // CD \(\Rightarrow\)AN // DM
\(\Rightarrow\)ANMD là hbh .
mà AN = AD ( = 1/2 AB ) \(\Rightarrow\)ANMD là hình thoi .
b) \(\Delta\)vuông AHB có :
HN là trung tuyến của AB . \(\Rightarrow\)HN = 1/2 AB
và MN = 1/2 AB ( MN = AN )
\(\Rightarrow\)\(\Delta\)HNM cân tại N .
Bài 1
A A A B B B C C C H H H M M M D D D I I I a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC
Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)
Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)
Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông
b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD
Suy ra \(IA=IB=IC=ID\)
Bài 2 α = 60° α = 60° α = 60° A A A B B B C C C D D D E E E a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)
Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)
b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)
Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)
Vậy ABCD là hình thang cân
c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)
\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)
Suy ra ABED là hình bình hành
Mà ta còn có AB=EB
Vậy ABED là hình thoi
a) Ta có ^A=1/2^ABC nên ^A=60o=>t/gABD đều
=>^D1=^D2=60o
=>^ABD=^HBK=60o=>^B1=^B2
Xét t/gABH và t/gDBK ta có:
AB=BD
^B1=^B2
^A=^D2
=>t/gABD=^DBK(g-c-g)
=>AH=DK mà AD=DC nên
=>HD=KC
=>DH+DK=AD (không đổi)
=>đpcm.
b)Có BH=BK
Lại có: ^HBK=60o=>t/gHBK đều
=>HK nhỏ nhất <=> BH nhỏ nhất
<=>BH_|_AD=>H là trung điểm AD khi đó K cũng là trung điểm của DC
Áp dujnh định lý pi-ta-go ta có:BH2=AB2-AH2=22-12=3=>BH=√33
Vậy H và K để HK ngắn nhất: √3
1: ABCD là hình thoi
=>góc A+góc B=180 độ
mà góc B=2*góc A
nên góc A=180/3=60 độ
Xét ΔABD có AB=AD và góc A=60 độ
nên ΔABD đều
2: Xét ΔABH và ΔDBK có
góc BAD=góc BDK
BA=BD
góc ABH=góc DBK
=>ΔABH=ΔDBK
=>AH=DK; BH=BK
Xét ΔBHK có BH=BK và góc HBK=60 độ
nên ΔBHK đều
3: DH+DK=DH+AH=DA ko đổi