K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

A B C H

Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(AH^2=BH.CH=2.3=6\Rightarrow AH=6\)(cm) (Vì AH > 0)

Áp dụng định lí Pytago vào tam giác vuông ABH , được : \(AB^2=AH^2+BH^2=2^2+6=10\Rightarrow AB=\sqrt{10}\)(cm)

Vậy a = 10 

5 tháng 8 2016

Độ dài BH=HC+HB=2+3=5

theo hệ thức lượng trong tam giác vuông ta có BA^2=BH.BC=2.5=10

=>AB= căn 10

 

b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)

a: Đề sai rồi bạn

13 tháng 2 2022

a.=> BC = BH + CH = 1 + 3 = 4 cm

áp dụng định lý pitago vào tam giác vuông AHB

\(AB^2=HB^2+AH^2\)

\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)

áp dụng định lí pitago vào tam giác vuông AHC

\(AC^2=AH^2+HC^2\)

\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)

20 tháng 3 2021

Tam giác ABC vuông tại A có đường cao AH. Áp dụng hệ thức lượng

\(\Rightarrow AH^2=BH.CH=2.3=6\)

\(\Rightarrow AH=\sqrt{6}\left(cm\right)\)

Áp dụng hệ thức lượng vào tam giác vuông \(ABC \) ta có :

\(AH^2=CH.BH=3.2=6\)

\(\Rightarrow AH=\sqrt{AH^2}=\sqrt{6}\) \(\left(cm\right)\)

NV
30 tháng 7 2021

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{29}\left(cm\right)\)

Hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{4\sqrt{29}}{29}\)

\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{25\sqrt{29}}{29}\)

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{10\sqrt{29}}{29}\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=2^2+5^2=29\)

\(\Leftrightarrow BC=\sqrt{29}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{4}{\sqrt{29}}=\dfrac{4\sqrt{29}}{29}\left(cm\right)\\CH=\dfrac{25}{\sqrt{29}}=\dfrac{25\sqrt{29}}{29}\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{2\cdot5}{\sqrt{29}}=\dfrac{10\sqrt{29}}{29}\left(cm\right)\)

Ta có: \(HC\cdot BC=15\)

nên \(HC=\dfrac{15}{BC}\)

Ta có: HB+HC=BC(H nằm giữa B và C)

nên \(BC=2+\dfrac{15}{BC}\)

\(\Leftrightarrow BC^2=2BC+15\)

\(\Leftrightarrow BC^2-2BC-15=0\)

\(\Leftrightarrow\left(BC-5\right)\left(BC+3\right)=0\)

\(\Leftrightarrow BC=5\left(cm\right)\)

\(\Leftrightarrow CH=5-2=3\left(cm\right)\)

\(\Leftrightarrow AH=\sqrt{HB\cdot HC}=\sqrt{6}\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{BH\cdot BC}=\sqrt{2\cdot5}=\sqrt{10}\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{CH\cdot BC}=\sqrt{15}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC 

=>HB*HC=4

BH+CH=5

=>BH=5-CH

HB*HC=4

=>HC(5-CH)=4

=>5HC-HC^2-4=0

=>HC^2-5HC+4=0

=>HC=1cm hoặc HC=4cm

TH1: HC=1cm

=>HB=4cm

\(AB=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right);AC=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\)

TH2: HC=4cm

=>HB=1cm

\(AB=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right);AC=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\)

19 tháng 7 2021

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago tam giác AHB vuông tại H 

\(AB^2=AH^2+BH^2=9+4=13\Rightarrow AB=\sqrt{13}\)cm 

* Áp dụng hệ thức : \(AH^2=BH.CH\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{9}{2}\)cm 

\(\Rightarrow BC=BH+HC=2+\dfrac{9}{2}=\dfrac{13}{2}\)cm 

* Áp dụng hệ thức : \(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{9}{\sqrt{13}}=\dfrac{9\sqrt{13}}{13}\)cm 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{3^2}{2}=\dfrac{9}{2}=4.5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=3^2+2^2=13\)

hay \(AB=\sqrt{13}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=3^2+4.5^2=29.25\)

hay \(AC=\dfrac{3\sqrt{13}}{2}\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=2+4,5=6,5(cm)

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Lời giải:
Áp dụng HTL trong tam giác vuông:

$AH=\sqrt{BH.CH}=\sqrt{2.4,5}=3$ (cm)

$BC=BH+CH=2+4,5=6,5$ (cm)

$AB^2=BH.BC=2.6,5=13$

$\Rightarrow AB=\sqrt{13}$ (cm)

$AC^2=CH.BC=4,5.6,5=29,25$ 

$\Rightarrow AC=\frac{3\sqrt{13}}{2}$ (cm)

$\sin B=\frac{AC}{BC}=\frac{3\sqrt{13}}{2.6,5}=\frac{3\sqrt{13}}{13}$ 

$\Rightarrow \widehat{B}=56,31^0$

 

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Hình vẽ:

17 tháng 2 2020

Ta có BH+HC=BC

17 tháng 2 2020

Bạn tham khảo phần a ở link này: https://olm.vn/hoi-dap/detail/242424867751.html

30 tháng 9 2021

\(BH=BC-CH=4\left(cm\right)\)

Áp dụng HTL tam giác:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=24\\AC^2=CH\cdot BC=12\\AH^2=BH\cdot CH=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\\AH=2\sqrt{2}\left(cm\right)\end{matrix}\right.\)