Cho tam giác ABC,lấy 2 điểm D,E thuộc cạnh AC sao cho AB=DE=EC.Gọi M là trung điểm của BC;CE cắt AM tại I.Chứng minh rằng:
a)Tứ giác BDME là hình thang
b)IA=IM
(vẽ hình hộ mình)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAMB có ND//MB
nên ND/MB=AN/AM
Xét ΔAMC có NE//MC
nên NE/MC=AN/AM
=>ND/MB=NE/MC
=>ND=NE
a) Xét tam giác ABD và tam giác ACD:
AD chung.
AB = AC (gt).
BD = CD (D là trung điểm của BC).
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\Delta ABC\) cân tại A.
Mà AD là trung tuyến (D là trung điểm của BC).
\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).
Xét tam giác MAD và tam giác NAD:
AD chung.
AM = AN (gt).
\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).
\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)
\(\Rightarrow\) DM = DN (2 cạnh tương ứng).
c) Xét tam giác ADC và tam giác EDB:
DC = DB (D là trung điểm của BC).
AD = ED (gt).
\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).
\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)
\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).
\(\Rightarrow\) AC // BE.
Mà \(DK\perp BE\left(gt\right).\)
\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)
Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)
Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)
\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)
Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.
a: Xét ΔAMD và ΔCMB có
MA=MC
góc AMD=góc CMB
MD=MB
=>ΔAMD=ΔCMB
b: Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
=>ΔABC=ΔCDA
c: Sửa đề: MF vuông góc BC
Xét ΔMBF và ΔMDE có
MB=MD
góc MBF=góc MDE
BF=DE
=>ΔMBF=ΔMDE
=>góc MFB=90 độ
=>MF vuông góc BC
d: ΔMFB=ΔMED
=>góc FMB=góc EMD
=>góc EMD+góc DMF=180 độ
=>M,E,F thẳng hàng
a: Xet ΔADE và ΔACB có
góc ADE=góc ACB
góc DAE chung
=>ΔADE đồng dạng với ΔACB
b: Xét ΔIDB và ΔICE có
góc IDB=góc ICE
góc I chung
=>ΔIDB đồng dạng với ΔICE
=>ID/IC=IB/IE
=>ID*IE=IB*IC
Sửa đề:
AD = DE = EC. BD cắt AM tại I
GIẢI
a) Sửa đề: Chứng mình BDEM là hình thang
Do DE = EC (gt)
⇒ E là trung điểm DC
Mà M là trung điểm BC (gt)
⇒ ME là đường trung bình của ∆BCD
⇒ ME // BD
Tứ giác BDEM có:
ME // BD (cmt)
⇒ BDEM là hình thang
b) Do AD = DE (gt)
⇒ D là trung điểm của AE
Do BD // ME (cmt)
⇒ BI // ME
Mà D là trung điểm của AE (cmt)
⇒ I là trung điểm của AM
⇒ IA = IM