Cho tam giác ABC có A=80 và AB/BC=BC/AB+AC.Chứng minh rằng B=60;C=40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chị tự kẻ hình :
a, xét tam giác AMB và tam giác ANC có : MB = CN (gt)
tam giác AMN cân tại A (gt) => AM = AN (đn) và góc AMN = góc ANM (tc)
=> tam giác AMB = tam giác ANC (c - g - c)
=> AB = AC (đn)
=> tam giác ABC cân tại A (đn)
b, tam giác AMB = tam giác ANC (câu a)
=> góc ABM = góc ACN (đn)
góc ABM + góc MBH = 180o (kb)
góc ACN + góc NCK = 180o (kb)
=> góc MBH = góc NCK
xét tam giác MBH và tam giác NCK có : MB = CN (gt)
góc MHB = góc CKN do MH | AB và NK | AC (gt)
=> tam giác MBH = tam giác NCK (ch - gn)
c, tam giác MBH = tam giác NCK (câu b)
=> góc BMH = góc CNK (đn)
=> tam giác MNO cân tại O (đl)
Cả Út, e lớp 4, mak biết bài lp 7, em là thần thánh ak, ns thek thôi chứ cj cx bt lm bài lớp 8 tro khi đó cj ms hok lớp 7. :))
a: Xét ΔBAM vuông tại A và ΔCAN vuông tại A có
BA=CA
góc B=góc C
=>ΔBAM=ΔCAN
b: ΔBAM=ΔCAN
=>AM=AN
góc MAB=90 độ
góc B=30 độ
=>góc AMN=60 độ
=>ΔAMN đều
góc NAB=120-90=30 độ=góc B
=>ΔNAB cân tại N
góc MAC=120-90=30 độ=góc C
=>ΔMAC cân tại M
a)ta có:góc B=góc C(gt)
nên tam giác ABC cân tại A
mà AD là đường phân giác của góc A(gt)
nên AD là đường trung trực của tam giác ABC
nên BD=CD
b)ta có tam giác ABC cân tại A(cmt)
nên AB=AC
c)xét tam giác vuông BDK và tam giác vuông CDH có
BD=DC(cmt)
góc B=góc C(gt)
nên tam giac1 BDK=tam giác CDH
d)ta có AB=AC(cmt)
mà BK=CH(tam giác BDK=tam giác CDH)
nên AK=AH
nên tam giác AKH cân tại A
mà AD là đường phân giác của góc A(gt)
nên AD là đường cao của tam giác AKH
nên AD vuông KH
ta có tam giác ABC cân tại A(cmt)
mà AD là đường phân giác của góc A(gt)
nên AD là đường cao của tam giác ABC
nên AD vuông BC
mà AD vuông KH
nên BC//KH
câu d) có cách giải nào khác ko bạn mk chưa học tam giác cân với cả Đường cao
a: góc C=180-80-60=40 độ
Vì góc A>góc B>góc C
=>BC>AC>AB
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AB=CD
AB+AC=AB+BD>AD
c: Xét ΔADC có
AN,CM là trung tuyến
AN cắt CM tại K
=>K là trọng tâm
=>CK=2/3CM=2/3*1/2BC=1/3CB
=>BC=3CK
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: BC=10cm
AH=4,8cm
c: Xét ΔABH vuông tại H có HM là đườg cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN\(\sim\)ΔACB
\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)
\(b)\) Xét \(\Delta ABC\) vuông tại A:
\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)
tick t đi r t giải cho :v
trên tia đối của ab kẻ ad sao cho ac=ad
rồi thay vào nhá
cuối là tam giác abc đồng dạng vs tam giác dbc (c-g-c)
vì ab/bc=bc/bd và chung góc b đấy => góc bca= góc bdc
tam giác acd cân ở a => góc c= góc d= góc a/2=40 độ
=>góc bca=40 độ