tìm x,y,z ;Biết: \(\sqrt{x}\)+ \(\sqrt{y-1}\)+\(\sqrt{z-2}\) = \(\frac{1}{2}\)(x+y+z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
mik đồng ý với cánh diều tuổi thơ mà câu này cực kì đơn giản.
tick cho mik nhé.
ta có: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right).\)
\(\Leftrightarrow2\left(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\right)=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)^2+\left(\sqrt{y-1}+1\right)^2+\left(\sqrt{z-2}+1\right)^2=0\)
mà \(\left(\sqrt{x}+1\right)^2\ge0;\left(\sqrt{y-1}+1\right)^2\ge0;\left(\sqrt{z-2}+1\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x}+1=0\\\sqrt{y-1}+1=0\\\sqrt{z-2}+1=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x}=-1\\\sqrt{y-1}=-1\\\sqrt{z-2}=-1\end{cases}}}\)
=> PTVN ( vì \(\sqrt{x}\ge0;\sqrt{y-1}\ge0;\sqrt{z-2}\ge0\) )
Vậy PTVN
i not biết