Tam giác ABCcó độ dài 3 cạnh AB = 3cm; BC = 4cm; AC =5cm thì tam giác đó
A. vuông tại A. B. vuông tại B. C. vuông tại C. D. nhọn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi độ dài các cạnh của tam giác là $a,b,c$ lần lượt tỉ lệ với $4,5,7$. Khi đó, a là cạnh nhỏ nhất.
Theo bài ra ta có:
$\frac{a}{4}=\frac{b}{5}=\frac{c}{7}$
$a+b+c-2a=b+c-a=24$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{4}=\frac{b}{5}=\frac{c}{7}=\frac{b+c-a}{5+7-4}=\frac{24}{8}=3$
$\Rightarrow a=4.3=12$ (cm); $b=3.5=15$ (cm); $c=3.7=21$ (cm)
a) Chiều cao của tam giác đó là:
\(26\times2\div8=6,5\left(cm\right)\)
b) Nếu kéo dài cạnh đáy của tam giác \(ABC\)thêm \(3cm\)thì diện tích tăng thêm là:
\(6,5\times3\div2=9,75\left(cm^2\right)\)
Xét ΔABC có
AC-AB<BC<AB+AC
\(\Leftrightarrow7-3< BC< 7+3\)
\(\Leftrightarrow4< BC< 10\)
\(\Leftrightarrow BC\in\left\{5;7\right\}\)
Ta có: AC + AB > BC > AC - AB(bất đẳng thức tam giác)
=>7 + 3 > BC > 7 - 3
10 > BC > 4
Mà độ dài BC là số nguyên tố nên BC\(\in\)(5,7)
Với BC =5 thì \(\Delta ABC\) là tam giác thường
Với BC =7 thì \(\Delta ABC\) là tam giác cân
\(S_{AHC}=\dfrac{AH\cdot HC}{2}=\dfrac{2.4\cdot3.2}{2}=2.4\cdot1.6=3.84\left(cm^2\right)\)
Xét \(\Delta ABC\) vuông tại A có
\(BC^2=AB^2+AC^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)
AC\(^2\) = CH . CB = 5 CH
\(\Rightarrow CH=3,2\left(cm\right)\)
AB . AC = AH . BC \(\Rightarrow AH=2,4\)
Nên \(S_{AHC}=\dfrac{1}{2}.AH.CH=\dfrac{1}{2}.2,4.3,2=3,84\left(cm^2\right)\)
B
B