cho hai số dương a và b , a khác b. Cho A=\(\frac{a+b}{2}\) ; B=\(\sqrt{ab}\) . Chứng minh rằng : B< \(\frac{^{\left(a-b\right)^2}}{8\left(A-B\right)}\)<A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\) suy ra \(\left(b-a\right)\left(a-b\right)=ab\). Vế trái có giá trị âm vì là tích của hai số đối nhau khác 0, vế phải có giá trị dương vì là tích của hai số dương. Vậy không tồn tại hai số dương a và b khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Chú ý: Ta cũng chứng minh được rằng không tồn tại hai số a và b khác 0, khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\). Thật vậy, nếu \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\)\(\Rightarrow\left(b-a\right)\left(a-b\right)=ab\Rightarrow ab-b^2-a^2+ab=ab\Rightarrow a^2-ab+b^2=0\)
\(\Rightarrow a^2-\frac{ab}{2}-\frac{ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}=0\Rightarrow a\left(a-\frac{b}{2}\right)-\frac{b}{2}\left(a-\frac{b}{2}\right)+\frac{3b^2}{4}=0\)
\(\Rightarrow\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\Rightarrow b=0,a=0.\)
Nhưng giá trị này làm cho biểu thức không có nghĩa.
Trường hợp 1 :
Giả sử a > b > 0 \(\Rightarrow\frac{1}{a}<\frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}<0;\frac{1}{a-b}>0\)
\(\Rightarrow\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
Trường hợp 2
Giả sử a < b \(\Rightarrow\frac{1}{a}>\frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}>0;\frac{1}{a-b}<0\)
\(\Rightarrow\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
Vậy không tồn tại hay không có hai số nguyên dương a , b khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Câu hỏi của Vũ Thị Kim Oanh - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo
\(8\left(A-B\right)=4\left(a+b-2\sqrt{ab}\right)=4\left(\sqrt{a}-\sqrt{b}\right)^2\)
\(\frac{\left(a-b\right)^2}{4\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
Điều phải chứng minh tương đương với:
\(\sqrt{ab}< \frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}< \frac{a+b}{2}\)
Ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow a+2\sqrt{ab}+b>4\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2>4\sqrt{ab}\Leftrightarrow\sqrt{ab}< \frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)(1)
\(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow2\left(a+b\right)>a+b+2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2< 2\left(a+b\right)\)(2)
Từ (1) (2) suy ra đpcm.