Cho góc xOy , lấy A,M thuộc Ox;B,N thuộc Oy sao cho OM=ON=OA+OB.Vẽ hình bình hành OACB.Chứng minh M,N,C thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có hình vẽ sau:
x O y M A B N 1 2
Xét ΔOAM và ΔOBM có:
OM: cạnh chung
OA = OB (gt)
MA = MB (gt)
\(\Rightarrow\) ΔOAM = ΔOBM (c-c-c)
\(\Rightarrow\) \(\widehat{O_1}\) = \(\widehat{O_2}\) ( 2 góc tương ứng)
\(\Rightarrow\) OM là tia phân giác của \(\widehat{xOy}\) (đpcm)

a. Xét tam giác MOA và tam giác MOB có :
OM là cạnh chung
MOA = MOB ( vì ox là tia phân giác góc xOy )
OMA = OMB ( = 90 độ )
Nên tam giác MOA = tam giác MOB ( c - c - c )
b. Ta có tam giác MOA = tam giác MOB ( cmt )
Nên MA = MB
Do đó M là trung điểm của AB
Vì vậy OM là đường trung trực của AB
Nhớ tk mk nha !!!
Xét tam giác AMO vuông tại A và tam giác BMO vuông tại B có:
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AMO = Tam giác BMO (cạnh huyền - góc nhọn)
=> AMO = BMO (2 góc tương ứng) => MO là tia phân giác của AMB
AM = BM (2 cạnh tương ứng) => tam giác MAB cân tại A
có MO là tia phân giác của AMB (chứng minh trên)
=> MO là đường trung trực của AB

O A B K H x y 1 2
Cm : a) Xét t/giác OAH và t/giác OBK
có: \(\widehat{OHA}=\widehat{OKB}=90^0\) (gt)
OA = OB (gt)
\(\widehat{O}\) :chung
=> t/giác OAH = t/giác OBK (ch - gn)
b) Xét t/giác OMH và t/giác OMK
có: \(\widehat{OHM}=\widehat{OKM}=90^0\) (gt)
OH = OK (vì t/giác OAH = t/giác OBK)
OM : chung
=> t/giác OMH = t/giác OMK (ch - cgv)
=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc t/ứng)
=> OM là tia p/giác của góc xOy
tự vẽ hình nha
ta có : OB+OA=ON mà OB+BN=ON nên OA=BN
lại có OACB là hình bình hành nên OA=BC
=>BN=BC =>BNC là tam giác cân
=>góc BNC = góc BCN (1)
tương tự ta có góc ACM = góc AMC(2)
góc O =góc C vì OACB là hbh
Xét tam giác ONM có góc O + góc N+góc M=180o
=>góc C+góc BCN+góc ACM=180o
=>M,N,C thẳng hàng
lại bài này! ko phải ai trên đây cx giỏi như cậu đâu