chứng minh rằng;
A = 35x - 14y + 29 - 1 chia hết cho 7 với mọi x, y thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(VT=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{xz}+\frac{2}{yz}-\left(\frac{2}{xy}+\frac{2}{xz}+\frac{2}{yz}\right)}\)
=\(\sqrt{\left(\frac{1}{x}+\frac{1}{z}+\frac{1}{y}\right)^2-\frac{2\left(x+y+z\right)}{xyz}}=\left|\frac{1}{x}+\frac{1}{z}+\frac{1}{y}\right|=VP\)
=>ĐPCM
tick cho minh nha
a) Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
Do đó: ΔABD=ΔAED(Cạnh huyền-góc nhọn)
Suy ra: AB=AE(Hai cạnh tương ứng)
b) Ta có: ΔABD=ΔAED(cmt)
nên DB=DE(hai cạnh tương ứng)
Xét ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE(cmt)
\(\widehat{BDF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔBDF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
c) Ta có: ΔBDF=ΔEDC(cmt)
nên BF=EC(hai cạnh tương ứng)
Ta có: AB+BF=AF(B nằm giữa A và F)
AE+EC=AC(E nằm giữa A và C)
mà AB=AE(cmt)
và BF=EC(cmt)
nên AF=AC
Xét ΔAFC có AF=AC(cmt)
nên ΔAFC cân tại A(Định nghĩa tam giác cân)
a: \(AM=\dfrac{AB}{2}\)
\(CN=\dfrac{CD}{2}\)
mà AB=CD
nên AM=CN
giúp mk với các cậu
Ta có: \(2^9-1=2^{3.3}-1=\left(2^3\right)^3-1=8^3-1\)
\(\Rightarrow2^9-1⋮8-1=7\)\(\Rightarrow2^9-1⋮7\)(1)
mà \(\hept{\begin{cases}35⋮7\\14⋮7\end{cases}}\Rightarrow\hept{\begin{cases}35x⋮7\\14y⋮7\end{cases}}\forall x,y\)
\(\Rightarrow35x-14y⋮7\)\(\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow A⋮7\)( đpcm )