Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Diện tích đáy hình hộp chữ nhật:
AB.AC=10.20=200(cm2)AB.AC=10.20=200(cm2)
Thể tích hình hộp chữ nhật:
V=S.h=200.15=3000(cm3)V=S.h=200.15=3000(cm3)
b) tam giác A'B'C' vuông tại B. Áp dụng định lý PITAGO ta có:
A′C′=√A′B′2+B′C′2=√102+202=10√5(cm)A′C′=A′B′2+B′C′2=102+202=105(cm)
⇒AC′=√AA′+A′C′2=√152+102.5=5√29(cm)
Đặt AB=x; BC=y
=>x+y=28 và x^2+y^2=20^2=400
=>x=16; y=12
=>S=16*12=192cm2
1. Áp dụng định lý Pi-ta-go ta có:
\(AB^2+BC^2=AC^2\Rightarrow BC=\sqrt{10^2-8^2}=6cm\)
Diện tích hình chữ nhật là:\(AB.BC=8.6=48cm^2\)
2.B
Vì là hình chữ nhật nên hai đường chéo sẽ bằng nhau
Do đó: \(AO=\frac{AC}{2}\)
Mặt khác: ABCD là hình chữ nhật \(\Rightarrow AB=AD=BC=DC=10cm\)
Trong tam giác ADC (\(\widehat{A}=90\)), có:
\(AC^2=AD^2+DC^2\)(định lý Py-ta-go)
\(\Leftrightarrow AC^2=10^2+10^2=200\Rightarrow AC=\sqrt{200}\)
Mà \(AO=\frac{AC}{2}\)(cmt) hay \(AO=\frac{\sqrt{200}}{2}\approx7,07\left(cm\right)\)
\(\Delta ABD\)vuông tại A \(\Rightarrow\)Theo định lý Pytago ta có: \(AB^2+AD^2=BD^2\)(1)
mà \(AD=\frac{3}{4}AB\), \(BD=10cm\)
Từ (1) \(\Rightarrow AB^2+\left(\frac{3}{4}AB\right)^2=10^2\)\(\Leftrightarrow AB^2+\frac{9}{16}AB^2=100\)
\(\Leftrightarrow AB^2\left(1+\frac{9}{16}\right)=100\)\(\Leftrightarrow AB^2.\frac{25}{16}=100\)\(\Leftrightarrow AB^2=64\)
\(\Rightarrow AB=8cm\)\(\Rightarrow AD=6cm\)
\(\Rightarrow S_{ABCD}=AB.AD=8.6=48\left(cm^2\right)\)
a. Ta có : AD=BC=20cm
=> V = AB.AD.AA'= 10.20.15 = 3000cm^3
b. Xét \(\Delta\)A'B'C' vuông tại B' ,ta có:
A'C' =\(\sqrt{\text{(A'B'^2+B'C'^2) }}\)) = \(\sqrt{\text{(10^2+20^2) }}\) = \(\sqrt[10]{5}\)
Do AA' là đường cao của hình hộp nên AA' vuông góc với A'C'
Xét \(\Delta\) AA'C' vuông tại A' ,ta có:
AC' = \(\sqrt{\text{(AA'^2+A'C'^2)}}\)=\(\sqrt[5]{29}\)
_Hok tốt_
a) Diện tích đáy hình hộp chữ nhật:
\(AB.AC=10.20=200\left(cm^2\right)\)
Thể tích hình hộp chữ nhật:
\(V=S.h=200.15=3000\left(cm^3\right)\)
b) tam giác A'B'C' vuông tại B. Áp dụng định lý PITAGO ta có:
\(A'C'=\sqrt{A'B'^2+B'C'^2}=\sqrt{10^2+20^2}=10\sqrt{5}\left(cm\right)\)
\(\Rightarrow AC'=\sqrt{AA'+A'C'^2}=\sqrt{15^2+10^2.5}=5\sqrt{29}\left(cm\right)\)
Áp dụng định lý Pi-ta-go vào tam giác ADC vuông tại D
DC =\(\sqrt{AC^2-AD^2}\)=\(\sqrt{10^2-6^2}\)=8 cm
diện tích hcn là :AD.DC=6.8=48 cm2