cho tam giac ABC có AB =3 cm;AC=4 cm;BC=5cm ,AH là đường cao của tam giác ABC.
a)CMR:tam giác ABC vuông
b)Tính AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
Tính \(AH\): dùng pytago với \(\Delta ABH\)
Tính \(HC\): dùng trừ đoạn
Tính \(AC\): đã có \(AH;HC\)thì dùng pytago với \(\Delta ACH\)
Ta có: AB = 15cm ; AC = 20cm
=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)
BC = 25 => BC2 = 252 = 625 (cm) (2)
Từ (1) và (2) => AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (đpcm).
ta có: AB = 15cm ; AC = 20cm
=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)
BC = 25 => BC2 = 252 = 625 (cm) (2)
Từ (1) và (2) => AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (đpcm).
Ta có hình vẽ:
M A B C 3cm 4cm 5cm
Áp dụng định lí Pytago, ta có:
52 = 25
42 + 32 = 25
=> 52 = 42 + 32
Vậy tam giác ABC là tam giác vuông
Ta có: BC = 5 cm. M là trung điểm của BC
=> BM = 2,5 cm
Ta có tính chất: trong tam giác vuông, đường nối từ góc vuông đến cạnh huyền = 1/2 cạnh huyền
=> AM = 1/2 BC
=> AM = 1/2 . 5 cm
=> AM = 2,5 cm
Ta có: AM = BM = 2,5 cm
=> tam giác AMB là tam giác cân.
1) Xét 2 tam giác vuông ΔACH và ΔBCH ta có:
AC = AB (tam giac ABC can tai C)
CH: cạnh chung
=> ΔACH = ΔBCH (c.h - c.g.v)
=> AH = BH (2 cạnh tương ứng)
=> H là trung điểm của AB
2) Có: ΔACH = ΔBCH (câu 1)
\(\Rightarrow\widehat{ACH}=\widehat{BCH}\) (2 góc tương ứng)
Xét ΔΔCD và ΔBCD ta có:
AC = AB (tam giac ABC can tai C)
\(\widehat{ACH}=\widehat{BCH}\left(cmt\right)\)
CD: cạnh chung
=> ΔACD = ΔBCD (c - g - c)
=> AD = BD (2 cạnh tương ứng)
=> Tam giác ADB cân tại D
3) Xét ΔADK và ΔADH ta có:
AK = AH (GT)
\(\widehat{KAD}=\widehat{HAD}\left(GT\right)\)
AD: cạnh chung
=> ΔADK = ΔADH (c - g - c)
\(\Rightarrow\widehat{AKD}=\widehat{AHD}\) (2 góc tương ứng)
Mà: \(\widehat{AHD}=90^0\Rightarrow\widehat{AKD}=90^0\)
=> AK ⊥ DK
Hay: AC ⊥ DK
4) Có: H là trung điểm của AB (câu 1)
=> \(AH=\frac{1}{2}AB=\frac{1}{2}.8=4\left(cm\right)\)
ΔAHD vuông tại H. Áp dụng định lý Pitago ta có:
AD2 = AH2 + DH2
=> DH2 = AD2 - AH2 = 52 - 42 (cm)
=> DH2 = 25 - 16 = 9 (cm)
=> DH = 3 (cm)
Bạn vẽ hình là ra ngay mà, bài nay chỉ dựa vào vẽ hình mà giải thôi bạn nha ^^. Chúc bạn giải được bài toán
a) Ta có: \(AB^2+AC^2=3^2+4^2=25\)
Và \(BC^2=5^2=25\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại \(A\)(định lí Pytago đảo)
b) \(\Delta ABC\) vuông tại \(A\)có: \(AB.AC=AH.BC\) (hệ thức về cạnh và đường cao trong tam giác vuông)
\(\Rightarrow AH=\frac{AB.AC}{BC}\)
\(\Rightarrow AH=\frac{3.4}{5}=\frac{12}{5}\left(cm\right)\)
a,Xét tam giác ABC có : AB^2 +AC^2 =BC^2
Tương đương : BC^2 : 3^2 +4^2 =25
suy ra : BC=5
Vậy tam giác ABC vương tại A
b,Ta có : ABC là tam giác vuông tại A . Suy ra AB.AC=AH. BC. Suy ra AH = (AB.AC) /BC. AH=(3.4) /5=12/5 (cm)