Cho tam giac ABC có : AB=15cm ; AC=20cm và BC=25 cm . Chứng tỏ tam giac ABC vuông tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
tích nha các bạn mik hứa sẽ tích lại thề luôn
Đào Ngọc Minh Thư
\(S=\dfrac{12\cdot9}{2}=6\cdot9=54\left(cm^2\right)\)
Xét tam giác ABC và tam giác AED có
\(\hept{\begin{cases}A:gócchung\\\frac{AE}{AB}=\frac{AD}{AC}\left(\frac{8}{20}=\frac{6}{15}\right)\end{cases}}\)
Vậy tam giác ABC đồng dạng với tam giác AED (c-g-c)
easy :>
A B C D E
Ta có : \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5} ;\frac{ AD}{AC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AB}{AC}\)
Xét 2 tam giác : ADE và ACB có :
\(\widehat{A}\)chung
\(\frac{AE}{AB}=\frac{AB}{AC}\)
\(\Rightarrow\Delta ADE~\Delta ACB\left(TH2\right)\)
Ta có hình vẽ :
A B C M N 36
( Bạn tự điền số vào nhé =)) . Mình chia phần không cân đối lắm lên bạn chia AC thành 4 phần bằng nhau nhé )
Ta thấy :
\(\frac{AM}{AB}\)\(=\)\(\frac{7,5}{15}\)\(=\frac{1}{2}\)
\(\Rightarrow\)\(AM=BM=\frac{1}{2}AB\)
Diện tích \(\Delta\)ANM = \(\frac{3}{4}\)Diện tích \(\Delta\)ACM ( Chung chiều cao hạ từ đỉnh M xuống và có đáy AN = \(\frac{3}{4}\)AC)
\(\Rightarrow\)Diện tích \(\Delta\)ACM là :
\(36\div\frac{3}{4}\)= \(48\)\(\left(cm^2\right)\)
Vì S \(\Delta ACM=\frac{1}{2}S\Delta ABC\)( Chung chiều cao hạ từ C xuống đáy AB, và đáy \(AM=\frac{1}{2}AB\))
\(\Rightarrow\)Diện tích \(\Delta\)\(ABC\)là ;
\(48\times2=96\)\(\left(cm^2\right)\)
Đáp số : 96 \(cm^2\)
nhé
a) Xét tam giác ABC có:
\(AC^2+BC^2=225+64=289=AB^2\)
Nên tam giác ABC vuông tại A.
b) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:
\(CK=\dfrac{AC\cdot BC}{AB}=\dfrac{15\cdot8}{17}=\dfrac{120}{17}\left(cm\right)\\BK=\dfrac{BC^2}{AB}=\dfrac{64}{17}\left(cm\right)\)
Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta được:
\(\sin B=\dfrac{CK}{BC}=\dfrac{15}{17}\\ \Rightarrow\widehat{B}\approx62^0\)
\(\sin C=\dfrac{BK}{BC}=\dfrac{8}{17}\\ \Rightarrow\widehat{C}\approx28^0\)
a: Xét ΔABC có \(AB^2=AC^2+BC^2\)
nên ΔBAC vuông tại C
Ta có: AB = 15cm ; AC = 20cm
=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)
BC = 25 => BC2 = 252 = 625 (cm) (2)
Từ (1) và (2) => AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (đpcm).
ta có: AB = 15cm ; AC = 20cm
=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)
BC = 25 => BC2 = 252 = 625 (cm) (2)
Từ (1) và (2) => AB2 + AC2 = BC2
Vậy tam giác ABC vuông tại A (đpcm).