K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

mình dốt hình lắm chỉ biết số học thôi

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

27 tháng 8 2021

a)  AD = DM ( gt ) 
⇒ ∆ ADM cân 
\(\widehat{DAM}=\widehat{AMD}\) 
\(\widehat{DAM}=\widehat{AMD}\)   ( 2 góc so le trong ) 
⇒  \(\widehat{DAM}=\widehat{BAM}\) 
⇒ AM la tia phân giác \(\widehat{A}\)
Do AD = BC (ABCD là hình bình hành) 
⇒ BC = MC
⇒ △ CMB cân 
⇒ \(\widehat{CMB}=\widehat{CBM}\)
\(\widehat{ABM}=\widehat{CMB}\) (2 góc so le trong do AB // MC)
\(\widehat{ABM}=\widehat{CBM}\)
⇒ BM là tia phân giác của \(\widehat{B}\)
b) Lấy E là trung điểm của AB 
ta có AE = DM ( do AB = DC) 
mà AE // DM ( do AB // CD ) 
⇒ Tứ giác AEDM là hình bình hành
⇒ AD = EM 
mà  AD =\(\dfrac{1}{2}\) AB 
⇒ EM = \(\dfrac{1}{2}\) AB 

⇒ ∆ AMB vuông tại M (vì trong tam giác có đường trung tuyến ứng với một cạnh bằng một nửa cạnh ấy thì tam giác đó là tam giác vuông) 
\(\widehat{AMB}=90^0\) ( đpcm )

1: Ta có: AB=2AD

mà AB=CD

nên CD=2AD

mà \(CD=2\cdot MD\cdot MC\)

nên AD=DM=MC=BC

Xét ΔAMD có DA=DM

nên ΔAMD cân tại D

Suy ra: \(\widehat{DAM}=\widehat{DMA}\)

mà \(\widehat{DMA}=\widehat{MAB}\)

nên \(\widehat{DAM}=\widehat{BAM}\)

hay AM là tia phân giác của \(\widehat{DAB}\)

Xét ΔBCM có MC=MB

nên ΔBMC cân tại C

Suy ra: \(\widehat{CMB}=\widehat{CBM}\)

mà \(\widehat{CMB}=\widehat{ABM}\)

nên \(\widehat{CBM}=\widehat{ABM}\)

hay BM là tia phân giác của \(\widehat{ABC}\)

 

5 tháng 7 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

∠ (BAD) + ∠(ADC) = 180 0  (hai góc trong cùng phía bù nhau)

⇒  ∠ (ADC) =  180 0  -  ∠ (BAD) =  180 0  – α

∠ (CDF) =  ∠ (ADC) +  ∠ (ADF) =  180 0  - α 2 + 60 0 = 240 0 - α

Suy ra:  ∠ (CDF) =  ∠ (EAF)

Xét  ∆ AEF và ∆ DCF: AF = DF ( vì  ∆ ADF đều)

AE = DC (vì cùng bằng AB)

∠ (CDF) =  ∠ (EAF) (chứng minh trên)

Do đó:  ∆ AEF =  ∆ DCF (c.g.c) ⇒ EF = CF (1)

∠ (CBE) =  ∠ (ABC) + 60 0 = 180 0 - α + 60 0 = 240 0 - α

Xét ΔBCE và ΔDFC: BE = CD ( vì cùng bằng AB)

∠ (CBE) =  ∠ (CDF) = 240 0 - α

BC = DF (vì cùng bằng AD)

Do đó  ∆ BCE =  ∆ DFC (c.g.c) ⇒ CE = CF (2)

Từ (1) và (2) suy ra: EF = CF = CE

Vậy  ∆  ECF đều.

20 tháng 12 2022

Câu 10:

góc A=180-130=50 độ

góc B=(180+50)/2=230/2=115 độ

góc C=180-115=65 độ

20 tháng 12 2022

có ai biết làm bài 11 ko a

17 tháng 9 2020

a) ABCD là hình bình hành => AD=BC, AD//BC

--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)

Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.

b) AHDK không thể là hình bình hành nha --> phải là AHCK

Chứng minh: AH//CK (cùng vuông góc BD)

CH//AK (vì ABCD là hình bình hành)

=> AHCK là hình bình hành