1a8 + 3b =295
b;84 - a7 = 3b
c: aab+ c = xyyy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số tự nhiên 3 chữ số khác nhau có dạng $\overline{abc}$
Để lập các số tự nhiên có 3 chữ số khác nhau:
$a$ có 5 cách chọn
$b$ có 4 cách chọn
$c$ có 3 cách chọn
$\Rightarrow \overline{abc}$ có $5.4.3=60$ cách lập
---------------
Để $\overline{abc}$ là số chẵn có 3 chữ số khác nhau:
$c$ có 2 cách chọn
$b$ có $4$ cách chọn
$a$ có $3$ cách chọn
$\Rightarrow \overline{abc}$ có $2.4.3=24$ cách chọn
Vậy trong 60 số có 24 số chẵn. Chọn 2 số ngẫu nhiên trong 60 số này, xác suất để 2 số được chọn đều là chẵn là: $\frac{C^2_{24}}{C^2_{60}}=\frac{46}{295}$
Ta có: \(C=\dfrac{2a}{3b}+\dfrac{3b}{4c}+\dfrac{4c}{5d}+\dfrac{5d}{2a}\)
\(=\dfrac{2a}{3b}\cdot4=\dfrac{8a}{3b}\)
2a/3b = 3b/4c = 4c/5d = 5d/2a (1)
ta có: 2a/3b=3b/4c=> 8ac=9b^2
4c/5d=5d/2a=> 8ac=25d^2
=> 9b^2=25d^2
=> b=5d/3
=> 3b=5d(*)
lại có: 3b/4c=4c/5d => 3b/4c=4c/3b (theo *)
=> 9b^2=16c^2
=> b=4c/3
=> 3b/4c=1
BT= 4*3b/4c (Vì các phân số = nhau)
=> BT=3b/c
Mà: 3b=4c ( Vì 3b/4c=1)
=> BT=4c/c=4
Vậy biểu thức trên = 4
Ta có:\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
Suy ra:\(\frac{2a}{3b}=1;\frac{3b}{4c}=1;\frac{4c}{5d}=1;\frac{5d}{2a}=1\)
Thay vào C ta được:\(C=1+1+1+1=4\)
Theo t/c dãy tỉ số=nhau:
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
Khi đó \(C=\frac{2a}{3b}+\frac{3b}{4c}+\frac{4c}{5d}+\frac{5d}{2a}=1+1+1+1=4\)
Vậy C=4