cho đường tròn (O;4),dây BC=4√3,từ điểm A trên cung lớn BC kẻ AH vuông góc với BC ở H.tìm max AH+BH
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan
1. Phân tích bài toán:
2. Giải bài toán:
- Bước 1: Xác định vị trí tương đối của H trên BC Gọi M là trung điểm của BC. Vì tam giác OBC cân tại O, nên OM vuông góc với BC tại M. Ta có: \(B M = M C = \frac{B C}{2} = \frac{4 \sqrt{3}}{2} = 2 \sqrt{3}\). Xét tam giác vuông OMB, ta có: \(O M = \sqrt{O B^{2} - B M^{2}} = \sqrt{4^{2} - \left(\right. 2 \sqrt{3} \left.\right)^{2}} = \sqrt{16 - 12} = \sqrt{4} = 2\) Vì AH vuông góc với BC tại H, nên H nằm trên đoạn BC.
-
-
-
- - Khi \(x = x_{1} = 2 \sqrt{3} - 2 + 2 \sqrt{2}\): \(A H = \sqrt{16 - 8} = \sqrt{8} = 2 \sqrt{2}\) \(A H + B H = 2 \sqrt{2} + 2 \sqrt{3} - 2 + 2 \sqrt{2} = 4 \sqrt{2} + 2 \sqrt{3} - 2 \approx 7.37\) - Khi \(x = x_{2} = 2 \sqrt{3} - 2 - 2 \sqrt{2}\): \(A H = \sqrt{16 - 8} = \sqrt{8} = 2 \sqrt{2}\) \(A H + B H = 2 \sqrt{2} + 2 \sqrt{3} - 2 - 2 \sqrt{2} = 2 \sqrt{3} - 2 \approx 1.46\) - Vậy, giá trị lớn nhất của AH + BH là \(4 \sqrt{2} + 2 \sqrt{3} - 2\) khi \(x = 2 \sqrt{3} - 2 + 2 \sqrt{2}\).
- Kết luận: Giá trị lớn nhất của AH + BH là \(4 \sqrt{2} + 2 \sqrt{3} - 2\).Bước 2: Biểu diễn AH và BH theo một biến Đặt \(B H = x\). Vì H nằm trên BC, nên \(0 \leq x \leq 4 \sqrt{3}\). Khi đó, \(H C = B C - B H = 4 \sqrt{3} - x\). Ta có: \(H M = B M - B H = 2 \sqrt{3} - x\). Xét tam giác AHM vuông tại H, ta có: \(A M^{2} = A H^{2} + H M^{2}\). Ta cần tìm mối liên hệ giữa AM và các yếu tố đã biết. Gọi I là giao điểm của AO và đường tròn (O). Khi đó, AI là đường kính của đường tròn. Ta có: \(\angle A B I = \angle A C I = 9 0^{\circ}\) (góc nội tiếp chắn nửa đường tròn). Xét tứ giác ABIC, ta có: \(\angle B A C + \angle B I C = 18 0^{\circ}\). Vì \(\angle B I C = \angle B O C / 2\) (góc nội tiếp và góc ở tâm cùng chắn cung BC), ta có: \(\angle B A C = 18 0^{\circ} - \angle B O C / 2\). Áp dụng định lý hàm cosin cho tam giác BOC: \(B C^{2} = O B^{2} + O C^{2} - 2 \cdot O B \cdot O C \cdot cos \angle B O C\) \(\left(\right. 4 \sqrt{3} \left.\right)^{2} = 4^{2} + 4^{2} - 2 \cdot 4 \cdot 4 \cdot cos \angle B O C\) \(48 = 32 - 32 \cdot cos \angle B O C\) \(cos \angle B O C = \frac{32 - 48}{32} = \frac{- 16}{32} = - \frac{1}{2}\) \(\angle B O C = 12 0^{\circ}\) Vậy, \(\angle B A C = 18 0^{\circ} - 12 0^{\circ} / 2 = 18 0^{\circ} - 6 0^{\circ} = 12 0^{\circ}\). Ta có: \(A H = \sqrt{A B^{2} - B H^{2}}\). Áp dụng định lý hàm cosin cho tam giác ABH: \(A B^{2} = A H^{2} + B H^{2}\) Ta cần tìm AB.
Bước 3: Tìm AH theo x Xét tam giác ABH vuông tại H: \(A H = \sqrt{A B^{2} - B H^{2}}\) Ta có \(B H = x\). Áp dụng định lý Ptolemy cho tứ giác ABCI nội tiếp đường tròn (O): \(A I \cdot B C = A B \cdot C I + A C \cdot B I\) Vì \(B I = C I\), ta có: \(A I \cdot B C = \left(\right. A B + A C \left.\right) \cdot B I\) \(8 \cdot 4 \sqrt{3} = \left(\right. A B + A C \left.\right) \cdot B I\) \(32 \sqrt{3} = \left(\right. A B + A C \left.\right) \cdot B I\) Ta cần tìm AB và AC theo x.
Bước 4: Tìm max AH + BH
- Ta cần tìm giá trị lớn nhất của \(A H + B H = A H + x\). Ta có \(A H = \sqrt{A B^{2} - x^{2}}\). Ta cần tìm AB theo x. Ta có: \(A H = \sqrt{A O^{2} - O H^{2}}\) (Trong tam giác AOH vuông tại H) \(O H = \sqrt{A O^{2} - A H^{2}}\) \(A H + B H = \sqrt{A O^{2} - O H^{2}} + x\) \(O H = \sqrt{R^{2} - A H^{2}}\) \(O H = \mid O M - H M \mid = \mid 2 - \left(\right. 2 \sqrt{3} - x \left.\right) \mid = \mid x - 2 \sqrt{3} + 2 \mid\) \(A H = \sqrt{16 - \left(\right. x - 2 \sqrt{3} + 2 \left.\right)^{2}}\) \(f \left(\right. x \left.\right) = A H + x = \sqrt{16 - \left(\right. x - 2 \sqrt{3} + 2 \left.\right)^{2}} + x\) Ta cần tìm max f(x).
Bước 5: Tìm cực trị của f(x) Để tìm cực trị của f(x), ta đạo hàm f(x) và giải phương trình f'(x) = 0. \(f^{'} \left(\right. x \left.\right) = 1 - \frac{x - 2 \sqrt{3} + 2}{\sqrt{16 - \left(\right. x - 2 \sqrt{3} + 2 \left.\right)^{2}}} = 0\) \(\frac{x - 2 \sqrt{3} + 2}{\sqrt{16 - \left(\right. x - 2 \sqrt{3} + 2 \left.\right)^{2}}} = 1\) \(\left(\right. x - 2 \sqrt{3} + 2 \left.\right)^{2} = 16 - \left(\right. x - 2 \sqrt{3} + 2 \left.\right)^{2}\) \(2 \left(\right. x - 2 \sqrt{3} + 2 \left.\right)^{2} = 16\) \(\left(\right. x - 2 \sqrt{3} + 2 \left.\right)^{2} = 8\) \(x - 2 \sqrt{3} + 2 = \pm 2 \sqrt{2}\) \(x = 2 \sqrt{3} - 2 \pm 2 \sqrt{2}\) Ta có hai nghiệm: \(x_{1} = 2 \sqrt{3} - 2 + 2 \sqrt{2} \approx 3.69\) \(x_{2} = 2 \sqrt{3} - 2 - 2 \sqrt{2} \approx 0.17\) Thay \(x_{1}\) và \(x_{2}\) vào f(x) để tìm giá trị lớn nhất.