K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 9 2020

\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}m-7\ge-4\\m\le3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge3\\m\le3\end{matrix}\right.\)

\(\Leftrightarrow m=3\)

20 tháng 10 2023

a) A ∪ B = (-∞; 15)

A ∩ B = [-2; 3)

b) Để A ⊂ B thì:

m - 1 > -2 và m + 4 ≤ 3

*) m - 1 > -2

m > -2 + 1

m > -1

*) m + 4 ≤ 3

m ≤ 3 - 4

m ≤ -1

Vậy không tìm được m thỏa mãn đề bài

27 tháng 10 2023

a) A ∪ B = (-∞;15]

AB = [-2;3)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)

Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)

Ta có:

 \(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x =  - 3\end{array} \right.\end{array} \right.\end{array}\)

Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).

b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{  - 3;0;1\}  = B\)

\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\}  = A\)

\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{  - 3;0;1\}  = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)

11 tháng 10 2021

a, A có \(\left(201-9\right):3+1=65\left(phần.tử\right)\)

\(B=A\) nên cũng có 65 phần tử

b, \(C=A\cap B=\left\{9;12;15;...;201\right\}\)

\(C=\left\{x\in N|x⋮3;9\le x\le201\right\}\)

5 tháng 6 2017

Ta viết được 3 tập hợp con:

Gọi 3 tập hợp đó là A,B,C

A={ a,b}

B={b,c}

C={a,c}

5 tháng 6 2017

A= { a,b }

B = { b,c }

C = { a,c }

25 tháng 5 2017

a) B \(\subset\) A

b)

B A a b c d

11 tháng 9 2023

\(mx^2-4x+m-3=0\left(1\right)\)

Để tập hợp B có đúng 2 tập con và \(B\subset A\) thì \(\left(1\right)\) có 2 nghiệm phân biệt cùng dương

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\P>0\\S>0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}4-m\left(m-3\right)>0\\\dfrac{m-3}{m}>0\\\dfrac{4}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-4< 0\\m< 0\cup m>3\\m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 4\\m< 0\cup m>3\\m>0\end{matrix}\right.\)

\(\Leftrightarrow3< m< 4\)

14 tháng 12 2023

Ta có:

\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\) 

+) \(\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BM}+\overrightarrow{BN}\right)=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CN}\right)\)

          \(=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{DC}\right)=\dfrac{1}{3}\left(-\dfrac{13}{6}\overrightarrow{AB}+\overrightarrow{AC}\right)\)

          \(=-\dfrac{13}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

=> \(\overrightarrow{AG}=\dfrac{5}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

Mặt khác:

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+k\overrightarrow{BC}=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

Để A, G, I thẳng hàng 

=>\(\dfrac{\dfrac{5}{18}}{1-k}=\dfrac{\dfrac{1}{3}}{k}\Rightarrow k=\dfrac{6}{11}\)

      

14 tháng 12 2023

X=B\A=[4;4].

14 tháng 12 2023

a) Liệt kê các phần tử của tập hợp �={�∈�∣ 2�2+3�+1=0 }A={xZ 2x2+3x+1=}

Ta có: 2�2+3�+1=0⇔[  �=−12  �=−1 2x2+3x+1=0  x=21  x=.

Do đó: �={−1}A={1}.

b) Cho hai tập hợp �={�∈�∣∣�∣>4}A={xRx>4} và �={�∈�∣−5≤�−1<5}B={xR5x1<5}. Xác định tập �=�\�X=B\A.

Ta có:

∣�∣>4⇔[ �>4 �<−4⇒�=(−∞;−4)∪(4;+∞ )x>4[  x>4x<4A=(;4)(4;+∞ ).

−5≤�−1<5⇔−4≤�<6⇒�=[−4;6)5x1<54x<6B=[4;6).

Suy ra �=�\�=[−4;4]X=B\A=[4;4].

21 tháng 4 2023

 Gọi T là biến cố "Trung bình cộng của các phần tử trong mỗi tập đều bằng 30." Biến cố này tương đương với biến cố "Tổng các phần tử trong mỗi tập đều bằng 60."

 Gọi A và B lần lượt là các biến cố "Tổng của các phần tử trong tập thứ nhất bằng 60." và "Tổng của các phần tử trong tập thứ hai bằng 60."

 Số các cặp \(\left(i,j\right)\) sao cho \(i\ne j;i,j\in A\) là \(C^2_{90}=4005\). Ta liệt kê các kết quả thuận lợi cho A:

 \(X=\left\{\left(1;59\right);\left(2;58\right);\left(3;57\right);...;\left(29;31\right)\right\}\) (có 29 phần tử). Vậy \(P\left(A\right)=\dfrac{29}{4005}\). Khi đó \(P\left(B\right)=\dfrac{28}{4004}=\dfrac{1}{143}\). Do đó \(P\left(T\right)=P\left(AB\right)=P\left(A\right).P\left(B\right)=\dfrac{29}{4005}.\dfrac{1}{143}=\dfrac{29}{572715}\).

 Vậy xác suất để trung bình cộng của các phần tử trong mỗi tập đều bằng 30 là \(\dfrac{29}{572715}\)