Cho tam giác ABC có đỉnh B(-1;3), trung tuyến AM có phương trình 3x+2y-9=0: trung tuyến CN: x-1=0
a) Viết pt tổng quát đường trung tuyến BE
b) Tìm tọa độ các đỉnh AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
+) \(\left( {{{\rm{p}}_{\rm{n}}}} \right)\) là dãy số chu vi của các tam giác theo thứ tự \({\rm{ABC}},{{\rm{A}}_1}\;{{\rm{B}}_1}{{\rm{C}}_1}, \ldots \)
Ta có:
\({{\rm{p}}_2} = {p_{\Delta {A_1}{B_1}{C_1}}} = \frac{a}{2} + \frac{a}{2} + \frac{a}{2} = \frac{1}{2} \cdot (3a) = \frac{1}{2} \cdot {p_1}\)
\(\begin{array}{l}{{\rm{p}}_3} = {p_{\Delta {A_2}{B_2}{C_2}}} = \frac{a}{4} + \frac{a}{4} + \frac{a}{4} = {\left( {\frac{1}{2}} \right)^2} \cdot (3a) = {\left( {\frac{1}{2}} \right)^2} \cdot {p_1}\\ \ldots \\{p_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{2}} \right)^{n - 1}} \cdot {p_1}\\...\end{array}\)
\( \Rightarrow \mathop {\lim }\limits_{n \to \infty } {p_n} = \mathop {\lim }\limits_{n \to \infty } \left( {{{\left( {\frac{1}{2}} \right)}^{n - 1}} \cdot (3a)} \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{2}} \right)^{n - 1}} \cdot \mathop {\lim }\limits_{n \to \infty } (3a) = 0.3a = 0.\)
+)\(\left( {{{\rm{S}}_n}} \right)\) là dãy số diện tích của các tam giác theo thứ tự \({\rm{ABC}},{{\rm{A}}_1}\;{{\rm{B}}_1}{{\rm{C}}_1}, \ldots \)
Gọi \(h\) là chiều cao của tam giác \({\rm{ABC}}\) và \({\rm{h}} = \frac{{a\sqrt 3 }}{2}\).
Ta có:
\(\begin{array}{l}{{\rm{S}}_3} = {S_{\Delta {A_2}{B_2}{C_2}}} = \frac{1}{2} \cdot \frac{a}{4} \cdot \frac{h}{4} = {\left( {\frac{1}{4}} \right)^2} \cdot \left( {\frac{1}{2}ah} \right) = {\left( {\frac{1}{4}} \right)^2} \cdot {S_1}\\ \ldots \\{S_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{4}} \right)^{n - 1}} \cdot {S_1}\\ \ldots \end{array}\)
\( \Rightarrow \mathop {\lim }\limits_{n \to \infty } {S_n} = \mathop {\lim }\limits_{n \to \infty } \left( {{{\left( {\frac{1}{4}} \right)}^{n - 1}} \cdot {S_1}} \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{4}} \right)^{n - 1}} \cdot \mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{2}ah} \right) = 0 \cdot \frac{1}{2}ah = 0\).
b) +) Ta có \(\left( {{{\rm{p}}_{\rm{n}}}} \right)\) là một cấp số nhân lùi vô hạn với số hạng đầu \({{\rm{p}}_1}\) = 3a và công bội \({\rm{q}} = \frac{1}{2}\) thỏa mãn \(|q| < 1\) có tổng:
\({p_1} + {p_2} + \ldots + {p_n} + \ldots = \frac{{3a}}{{1 - \frac{1}{2}}} = 6a\)
+) Ta có \(\left( {{{\rm{S}}_n}} \right)\) là một cấp số nhân lùi vô hạn với số hạng đầu \({{\rm{S}}_1} = \frac{1}{2}ah\) và công bội \(q = \frac{1}{4}\) thỏa mãn \(|q| < 1\) có tổng:
\({S_1} + {S_2} + \ldots + {S_n} + \ldots = \frac{{\frac{1}{2}ah}}{{1 - \frac{1}{4}}} = \frac{2}{3}ah = \frac{2}{3}a.\frac{{a\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{3}\)
Đáp án: A
Ta có:
Đường thẳng BC đi qua B và có vecto là vecto pháp tuyến:
BC: 3(x + 1) - 4(y - 0) = 0 ⇔ 3x - 4y + 3 = 0
Gọi AH là đường cao của tam giác ABC
A B C M N E H
goi B(a; b) N( c; d)
\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)
N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)
2d = -3 +b (3)
B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)
tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)
dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0
tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE
\(\Rightarrow E\left(5;1\right)\). vì ptdt (BE) cung la ptdt qua (BC):
3x+5y-20 =0
tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)
Đáp án: B
Ta có A(-1;3), B(1;0) và C(2;-1)
Phương trình đường thẳng BC có dạng: (x - 1) + (y - 0) = 0 ⇔ x + y - 1 = 0
Độ dài đường cao của tam giác ABC kẻ từ điểm C chính bằng khoảng cách từ điểm A đến đường thẳng BC:
Lời giải:
Gọi giao điểm của $AM$ và $CN$ là $I$
Khi đó $BI$ là đường trung tuyến của tam giác $ABC$ theo tính chất ba đường trung tuyến đồng quy tại một điểm. Theo đó phương trình trung tuyến $BE$ cũng trùng với $BI$
Giao điểm $I$ có tọa độ là nghiệm của HPT:
\(\left\{\begin{matrix} 3x+2y-9=0\\ x-1=0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 3x+2y-9=0\\ x=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3+2y-9=0\\ x=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} y=3\\ x=1\end{matrix}\right.\)
Vậy $I(1;3)$
Gọi pt đường thẳng $BI$ là $y=ax+b$
Ta có: \(B(-1;3); I(1;3)\in BI\Rightarrow \left\{\begin{matrix} 3=a+b\\ 3=-a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=0\\ b=3\end{matrix}\right.\)
Vậy PT đường trung tuyến là: \(y=3\Leftrightarrow y-3=0\)
b)
Vì \(A\in AM\Rightarrow A(a, \frac{9-3a}{2})\)
Vì \(C\in CN\Rightarrow C(1; c)\)
$I(1;3)$ là trọng tâm của tam giác $ABC$ nên:
\(\left\{\begin{matrix} \frac{x_A+x_B+x_C}{3}=x_I\\ \frac{y_A+y_B+y_C}{3}=y_I\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} \frac{a+(-1)+1}{3}=1\\ \frac{\frac{9-3a}{2}+3+c}{3}=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a=3\\ \frac{\frac{9-3a}{2}+3+c}{3}=3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a=3\\ \frac{c+3}{3}=3\end{matrix}\right.\Rightarrow a=3; c=6\)
Vậy tọa độ A là: \((3; 0)\), tọa độ C là \((1;6)\)
Os. Htt mình chỉ bảo cho bạn cách lập luận có suy luận
(không lên chỉ biết dựa thụ động vào lý thuyết )
G trọng tâm =>giao CN và AM G(1;3)
BE qua G ; tung độ B và G giống nhau
=> BE//ox qua G => pttq BE ; y-3 =0