Tìm gtri của m để 3 đt đồng quy
3x+2y=5 ; 2x-y=4 và mx+7y=11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\):
\(-\dfrac{1}{2}x+\dfrac{3}{2}=2x+1\Leftrightarrow x=\dfrac{1}{5}\Rightarrow y=\dfrac{7}{5}\)
\(\Rightarrow A\left(\dfrac{1}{5};\dfrac{7}{5}\right)\) là giao điểm của d1 và d2
Ba đường thẳng đồng quy khi \(\left(\dfrac{1}{5};\dfrac{7}{5}\right)\in\left(d_3\right)\)
\(\Leftrightarrow\dfrac{2m}{5}+\dfrac{7}{5}=m+1\)
\(\Leftrightarrow m=\dfrac{2}{3}\)
Vì \(a.a'=-\dfrac{1}{2}.2=-1\Rightarrow\left(d_1\right)\perp\left(d_2\right)\)
Gọi B, C lần lượt là giao điểm của \(\left(d_1\right);\left(d_2\right)\) với \(\left(d_3\right)\)
\(\Rightarrow\) \(\left(d_3\right)\) cắt \(\left(d_1\right)\) và \(\left(d_2\right)\) tạo thành 1 tam giác vuông tại A
\(\Leftrightarrow\) \(A\notin\left(d_3\right)\) và \(\left(d_3\right)\) không song song với \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{2}{3}\\-\dfrac{1}{2}\ne-2m\\2\ne-2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{2}{3}\\m\ne\dfrac{1}{4}\\m\ne-1\end{matrix}\right.\)
a: Để (d) vuông góc với x-2y=3 thì \(\dfrac{1}{2}\left(m-2\right)=-1\)
\(\Leftrightarrow m-2=-2\)
hay m=0
\(2y^2-4y>0\)
\(\Rightarrow2y\left(y-2\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2y>0\Leftrightarrow y>0\\y-2>0\Leftrightarrow y>2\end{matrix}\right.\\\left\{{}\begin{matrix}2y< 0\Leftrightarrow y< 0\\y-2< 0\Leftrightarrow y< 2\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Phương trình hoành độ giao điểm của \(\left(d_1\right);\left(d_2\right)\):
\(4-x=2x-5\)
\(\Leftrightarrow x=3\Rightarrow y=1\Rightarrow\left(3;1\right)\) là giao điểm của \(\left(d_1\right);\left(d_2\right)\)
Ba đường thẳng đã cho đồng quy khi và chỉ khi \(\left(3;1\right)\in\left(d_3\right)\)
\(\Leftrightarrow6-m-2m+1=0\)
\(\Leftrightarrow m=\dfrac{7}{3}\)
phương trình hoành độ giao điểm của f(x) với y = -1 là
x4 - (3m + 2)x2 + 3m = -1
⇔ x4 - (3m + 2)x2 + 3m + 1 = 0 (1)
Đặt x2 = t (ĐK : t ≥ 0)
Phương trình trở thành
t2 - (3m + 2)t + 3m + 1 = 0 (2)
Để (1) có 4 nghiệm phân biệt nhỏ hơn 2 thì (2) có 2 nghiệm phân biệt thỏa mãn 0 < t < 4
⇒ \(\left\{{}\begin{matrix}9-9m< 0\\3m+1>0\end{matrix}\right.\) (cái này bạn vẽ bảng biến thiên ra là xong)
⇒ \(\dfrac{-1}{3}< m< 1\)
Vậy tập hợp giá trị m cần tìm là \(\left(\dfrac{-1}{3};1\right)\)
vì hàm số y=(m-1)x+1 là hàm số bậc nhất nên m-1\(\ne\)0 <=>m\(\ne\)1(đk1)
vì d//đt y=-x+1 nên ta có:
-1 = m-1 <=> m= 0(tmđk1)
Vậy m=0 khi d//đt y=-x+1
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a