Trong mặt phẳng Oxy, cho A(3;0), B(0;4), C(2;2) và đường thẳng d: 2x-y-1=0. Tìm trên BC một điểm E và trên đường thẳng d một điểm F sao cho A là trung điểm EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:
\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}} = 5\)
b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)
![](https://rs.olm.vn/images/avt/0.png?1311)
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\overrightarrow{u}=2.\overrightarrow{a}+\overrightarrow{b}=\left(-1.2+3;2.2-2\right)=\left(1;2\right)\)
\(\overrightarrow{BC}=\left(2;-2\right)=2\left(1;-1\right)\Rightarrow\) đường thẳng BC nhận \(\left(1;1\right)\) là 1 vtpt
Phương trình BC: \(1\left(x-2\right)+1\left(y-2\right)=0\Leftrightarrow x+y-4=0\)
Do E thuộc BC nên tọa độ có dạng: \(E\left(a;4-a\right)\)
Do F thuộc d nên tọa độ có dạng: \(F\left(b;2b-1\right)\)
Áp dụng công thức trung điểm:
\(\left\{{}\begin{matrix}a+b=6\\4-a+2b-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=6\\-a+2b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=5\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}E\left(5;-1\right)\\F\left(1;1\right)\end{matrix}\right.\)