K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

a, Chứng minh rằng A chia hết cho 3 

A = 2 + 22 + 23 + .....+ 260 

A = ( 2+22 ) + (23 + 24 ) + .....+ (259 + 260 )

A  = 2(1+2 ) + 23(1+2) +,...+  259(1+2)

A = 2.3 + 23.3 +  ....+259.3 

A = 3(2+23+....+259 ) \(⋮3\) 

=> đpcm 

chứng minh ằng A chia hết cho 7 

A = 2+22 + 23 + .....+ 260

A = ( 2+22 + 23 ) + (2+ 25 + 26) + .... + (258+259+260)

A = 2(1+2 +22 ) +2(1+2 +22 ) + .... +258(1+2 +22 )

A = 2.7 +24.7  + ....+258.7 

A= 7(2+24 ....+258 )\(⋮7\)

=> đpcm

Chứng minh A chia hết cho 15 

A = 2 + 22 + 23 + .....+ 260 

A = ( 2 + 22 + 23 +24 ) +....+  (257 + 258 + 259 + 260 ) 

A = 2(1+2+22 + 23 ) + .....+ 257(1+2+22+23)

A = 2.15 + ....+ 257.15

A = 15.(2+...+257\(⋮15\) 

=> đpcm  

b,

chứng minh chia hết cho 13

 B= 3 + 33 + 35 + +  ..........+ 31991 

B = (3+33 + 35 ) + (37  + 39 +311 ) + ......+ (31987 + 31989 + 31991 ) 

B = 3(1+32 +34 ) + 37(1+32 + 34 ) + ....+ 31987(1+32 + 34 )

B = 3.91 + 37.91 + ...+ 31987.91 

B = 91(3+37 + ... 31987 ) 

B = 7.13.(3+37 + ... 31987 )  \(⋮13\) 

=> đpcm 

chứng minh chia hết cho 41 

B = 3+33 + 35 + ...+ 31991

B = (3+33 + 3 + 37 ) + ...(31985 + 31987 + 31989 + 31991  ) 

B = 3(1+32 + 34 + 36 ) + ...+ 31985(1+32 + 34 + 36)

B = 3. 820 + ...+ 31985.820

B = 820(3+...+31985)

B = 20.41 (3+...+31985\(⋮41\) 

=> đpcm

7 tháng 7 2019

a) A chia hết cho 2 vì tất cả các số hạng của tổng đều chia hết cho 2.

b) Ta tách ghép các số hạng của A thành các nhóm sao cho mỗi nhóm xuất hiện thừa số chia hết cho 3. Khi đó:

10 tháng 10 2021
4₁ A= 2 +2²³ +2 ² + + 220 a₁ A = 2₁ [1 + 2 +2²¹ +. +2¹2):2 Vay A chia hết choi b₁ A = 2 + 2² +2²+ + 220 (2 +2²) + (2 ² + 2 9) + . + (219+220) = 2₁ (1 + 2) + 2² (2+1). .. +2 19 (2+1) + = 2₁3 + 2³.3 + ..+ 219.3. = (2+2 ³+ + 219) 3:3 Vậy A chia hết cho 3 A = 2 + 2 ² + 2³ + 2ª +. 20 + 2.9+ +2 2+2 ³ + 2² +2²4 + + 218 + 720 +2²³ +2²+ +218 +220 2. (2 +2²) + 2² (1+2²) +.. + 218 ( 1 +2²) = 2 5 +2²5 + + 218 5. 12 +2° + 2 ... +218 ) 5 : 5. vậy A chia hết cho 5
17 tháng 10 2023

a) \(A=2+2^2+2^3+...+2^{20}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(A=2\cdot\left(1+3\right)+2^3\cdot\left(1+3\right)+...+2^{59}\cdot\left(1+3\right)\)

\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)

Vậy A chia hết cho 3

________

\(A=2+2^2+2^3+...+2^{20}\)

\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)

\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)

\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)

Vậy A chia hết cho 5 

11 tháng 1 2024

Câu 3:

\(A=3+3^2+...+3^{100}\)

\(3A=3^2+3^3+...+3^{101}\)

\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-3\) 

Mà: \(2A+3=3^N\)

\(\Rightarrow3^{101}-3+3=3^N\)

\(\Rightarrow3^{101}=3^N\)

\(\Rightarrow N=101\)

Vậy: ... 

Câu 1:

\(A=4+2^2+...+2^{20}\)

Đặt \(B=2^2+2^3+...+2^{20}\)

=>\(2B=2^3+2^4+...+2^{21}\)

=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)

=>\(B=2^{21}-4\)

=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2

Câu 6:

Đặt A=1+2+3+...+n

Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)

=>\(A=\dfrac{n\left(n+1\right)}{2}\)

=>\(A⋮n+1\)

Câu 5:

\(A=5+5^2+...+5^8\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)

\(=30\left(1+5^2+5^4+5^6\right)⋮30\)

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

21 tháng 11 2021

A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)

A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)

A=\(3.1+3.2^2+...+3.2^{19}\)

A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)

Vậy A\(⋮3\)

21 tháng 11 2021

A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)

A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)

A=3.1+3.22+...+3.2193.1+3.22+...+3.219

A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3

NÊN  A⋮3

13 tháng 11 2023

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

13 tháng 11 2023

Sửa đề: \(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)

=>\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{19}\right)⋮3\)

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^96(1+2+2^2)+2^99

=7(1+2^3+...+2^96)+2^99 ko chia hết cho 7

14 tháng 5 2019

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 7.

Bước 2. Áp dụng tính chất chia hết của một tích.

Ta có:

A = 2 + 2 2 + 2 3 + … + 2 60     = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + … + 2 58 + 2 59 + 2 60     = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2     = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2     = 2 + 2 4 + … + 2 58 .7 ⇒ A ⋮ 7

20 tháng 7 2018