Các tìm kiếm liên quan đến cho a,b tỉ lệ nghịch với 1/3; 1/2 ; a,c tỉ lệ nghịch với 1/5;1/7 và a+b+c=184. Giá trị của biểu thức M = a^2+b^2-c^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có:
y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8
\(\Rightarrow y=\frac{0,8}{x}\left(1\right)\)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5
\(\Rightarrow x=\frac{0,5}{z}\left(2\right)\)
Thay (2) vào (1) ta có: \(y=\frac{0,8}{\frac{0,5}{z}}=0,8\cdot\frac{z}{0,5}=1,6z\)
Vậy y tỉ lệ thuận với z và hệ số tỉ lệ là 1,6
do z tỉ lệ nghịch với y theo hệ số tỉ lệ \(\frac{-1}{2}\)=>zy=\(\frac{-1}{2}\)=>z=\(\frac{-1}{2}\).\(\frac{1}{y}\)(1)
và z tỉ lệ thuận với x theo hệ số tỉ lệ 4 =>z=4x => x=\(\frac{1}{4}\).z (2)
thay (2) vào (1), ta được: x=\(\frac{1}{4}.\frac{1}{2}.\frac{1}{y}\)=\(\frac{1}{8}.\frac{1}{y}\)=>xy=\(\frac{1}{8}\)
vậy x tỉ lệ nghịch với x theo hệ số tỉ lệ \(\frac{1}{8}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{2a-3b+c}{2\cdot6-3\cdot4+3}=\dfrac{1}{3}\)
Do đó: a=2; b=4/3; c=1
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a-3b+c}{2\cdot2-3\cdot3+4}=\dfrac{1}{-1}=-1\)
Do đó: a=-2; b=-3; c=-4
x tỉ lệ thuận với y theo hệ số tỉ lệ là 3 nên x=3y (1)
y tỉ lệ thuận với z theo hệ số tỉ lệ là 4 nên y=4z (2)
Từ (1) và (2) ta có:x=3y=3.4z=12z
Vậy x tỉ lệ thuận với z theo hệ số tỉ lệ là 12
= -1856