K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 10 2020

a/ Ta có hệ điều kiện:

\(\left\{{}\begin{matrix}-\frac{b}{2a}=2\\\frac{4ac-b^2}{4a}=4\\c=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\24a-b^2=16a\\c=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\8a-16a^2=0\\c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-2\\c=6\end{matrix}\right.\) \(\Rightarrow P\)

b/ \(\left\{{}\begin{matrix}-\frac{b}{2a}=2\\\frac{4ac-b^2}{4a}=3\\c=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-4a-b^2=12a\\c=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\16a^2+16a=0\\c=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=4\\c=-1\end{matrix}\right.\) \(\Rightarrow S\)

NV
6 tháng 3 2023

Do (P) qua A;B;C, thay tọa độ A, B, C vào pt (P) ta được:

\(\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=3\\a-b+c=-3\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=-3\end{matrix}\right.\)

\(\Rightarrow\left(P\right):\) \(y=x^2+x-3\)

23 tháng 10 2020

parabol y= ax2+bx+c đi qua A(2,-7)

\(\Rightarrow-7=a.2^2+b.2+c\)

\(\Rightarrow-7=4a+2b+c\)

\(\Rightarrow4a+2b+c=-7\)(1)

parabol y=ax2+bx+c đi qua B (-5,0)

\(\Rightarrow0=a\left(-5\right)^2+b.\left(-5\right)+c\)

\(\Rightarrow0=25a-5b+c\)

\(\Rightarrow25a-5b+c=0\)(2)

parabol có trục đối cứng là x=2 nên ta có

\(\frac{-b}{2a}=2\Leftrightarrow-b=4a\Leftrightarrow4a+b=0\left(3\right)\)

từ (1) ,(2) và (3) ta có hệ phương trình

\(\left\{{}\begin{matrix}4a+2b+c=-7\\25a-5b+c=0\\4a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{7}\\b=\frac{-4}{7}\\c=\frac{-45}{7}\end{matrix}\right.\)

đây là theo cách mình làm thôi k hắc là đúng hya sai đâu cho dù sai bạn cũng dựa vào cái kiểu này mà tính nhé

23 tháng 10 2020

nhận đường thẳng x= 2 là trục đối xứng nha

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Đồ thị hàm số  \(y = a{x^2} + bx + c\) đi qua điểm A(8; 0) nên:

\(a{.8^2} + b.8 + c = 0 \Leftrightarrow 64a + 8b + c = 0\)

Đồ thị hàm số  \(y = a{x^2} + bx + c\) có đỉnh là I(6;-12):

\(\frac{{ - b}}{{2a}} = 6 \Leftrightarrow  - b = 12a \Leftrightarrow 12a + b = 0\)

\(a{.6^2} + 6b + c =  - 12 \Leftrightarrow 36a + 6b + c =  - 12\)

Từ 3 phương trình trên ta có: \(a = 3;b =  - 36,c = 96\)

=> Hàm số cần tìm là \(y = 3{x^2} - 36x + 96\)

6 tháng 3 2023

\(\left(P\right):y=ax^2+bx+2\)

Vì (P) đi qua điểm \(M\left(1;5\right)\) nên ta có: \(a.1^2+b.1+2=5\Leftrightarrow a+b=3\)    (1)

Mà (P) có trục đối xứng là \(x=\dfrac{-1}{4}\) nên:   \(\dfrac{-b}{2a}=\dfrac{-1}{4}\)

\(\Leftrightarrow-2a=-4b\Leftrightarrow-2a+4b=0\)                 (2)

Từ (1) và (2) ta có:  

\(\left\{{}\begin{matrix}a+b=3\\-2a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Vậy parabol cần tìm có dạng:  \(y=2x^2=x+2\)

 

6 tháng 3 2023

xác định parabol (p): y= ax^2+2x+c biết rằng i (1/2; 11/2) là đỉnh của (p) 

giải dùm t câu này vs c

6 tháng 7 2018

Đáp án D

7 tháng 2 2017

Đáp án C

Từ giả thiết, ta có hệ:

− b 2 a = − 2 4 a − 2 b + c = 5 a + b + c = − 1 ⇔ a = − 2 3 ; b = − 8 3 ; c = 7 3

⇒ S = a 2 + b 2 + c 2 = 13

13 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}1+b+c=0\\4-2b+c=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c=-1\\c-2b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{11}{3}\\c=\dfrac{8}{3}\end{matrix}\right.\\ \Leftrightarrow\left(P\right):y=x^2-\dfrac{11}{3}x+\dfrac{8}{3}\)

26 tháng 8 2017

Đáp án C

26 tháng 11 2021

đáp án C